TY - JOUR
T1 - Personalized recommender system based on friendship strength in social network services
AU - Seo, Young Duk
AU - Kim, Young Gab
AU - Lee, Euijong
AU - Baik, Doo Kwon
N1 - Funding Information:
The authors are grateful to Daumsoft providing their Twitter data for our experiments. This research was supported by the Next-Generation Information Computing Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2012M3C4A7033346).
Publisher Copyright:
© 2016 Elsevier Ltd
PY - 2017/3/1
Y1 - 2017/3/1
N2 - The rapid growth of social network services has produced a considerable amount of data, called big social data. Big social data are helpful for improving personalized recommender systems because these enormous data have various characteristics. Therefore, many personalized recommender systems based on big social data have been proposed, in particular models that use people relationship information. However, most existing studies have provided recommendations on special purpose and single-domain SNS that have a set of users with similar tastes, such as MovieLens and Last.fm; nonetheless, they have considered closeness relation. In this paper, we introduce an appropriate measure to calculate the closeness between users in a social circle, namely, the friendship strength. Further, we propose a friendship strength-based personalized recommender system that recommends topics or interests users might have in order to analyze big social data, using Twitter in particular. The proposed measure provides precise recommendations in multi-domain environments that have various topics. We evaluated the proposed system using one month's Twitter data based on various evaluation metrics. Our experimental results show that our personalized recommender system outperforms the baseline systems, and friendship strength is of great importance in personalized recommendation.
AB - The rapid growth of social network services has produced a considerable amount of data, called big social data. Big social data are helpful for improving personalized recommender systems because these enormous data have various characteristics. Therefore, many personalized recommender systems based on big social data have been proposed, in particular models that use people relationship information. However, most existing studies have provided recommendations on special purpose and single-domain SNS that have a set of users with similar tastes, such as MovieLens and Last.fm; nonetheless, they have considered closeness relation. In this paper, we introduce an appropriate measure to calculate the closeness between users in a social circle, namely, the friendship strength. Further, we propose a friendship strength-based personalized recommender system that recommends topics or interests users might have in order to analyze big social data, using Twitter in particular. The proposed measure provides precise recommendations in multi-domain environments that have various topics. We evaluated the proposed system using one month's Twitter data based on various evaluation metrics. Our experimental results show that our personalized recommender system outperforms the baseline systems, and friendship strength is of great importance in personalized recommendation.
KW - Collaborative filtering (CF)
KW - Friendship strength
KW - Personalized recommender system
KW - Social behavior
KW - Social network services
UR - http://www.scopus.com/inward/record.url?scp=84994060549&partnerID=8YFLogxK
U2 - 10.1016/j.eswa.2016.10.024
DO - 10.1016/j.eswa.2016.10.024
M3 - Article
AN - SCOPUS:84994060549
SN - 0957-4174
VL - 69
SP - 135
EP - 148
JO - Expert Systems with Applications
JF - Expert Systems with Applications
ER -