Personalized recommender system based on friendship strength in social network services

Young Duk Seo, Young Gab Kim, Euijong Lee, Doo Kwon Baik

    Research output: Contribution to journalArticlepeer-review

    96 Citations (Scopus)

    Abstract

    The rapid growth of social network services has produced a considerable amount of data, called big social data. Big social data are helpful for improving personalized recommender systems because these enormous data have various characteristics. Therefore, many personalized recommender systems based on big social data have been proposed, in particular models that use people relationship information. However, most existing studies have provided recommendations on special purpose and single-domain SNS that have a set of users with similar tastes, such as MovieLens and Last.fm; nonetheless, they have considered closeness relation. In this paper, we introduce an appropriate measure to calculate the closeness between users in a social circle, namely, the friendship strength. Further, we propose a friendship strength-based personalized recommender system that recommends topics or interests users might have in order to analyze big social data, using Twitter in particular. The proposed measure provides precise recommendations in multi-domain environments that have various topics. We evaluated the proposed system using one month's Twitter data based on various evaluation metrics. Our experimental results show that our personalized recommender system outperforms the baseline systems, and friendship strength is of great importance in personalized recommendation.

    Original languageEnglish
    Pages (from-to)135-148
    Number of pages14
    JournalExpert Systems With Applications
    Volume69
    DOIs
    Publication statusPublished - 2017 Mar 1

    Bibliographical note

    Funding Information:
    The authors are grateful to Daumsoft providing their Twitter data for our experiments. This research was supported by the Next-Generation Information Computing Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2012M3C4A7033346).

    Publisher Copyright:
    © 2016 Elsevier Ltd

    Keywords

    • Collaborative filtering (CF)
    • Friendship strength
    • Personalized recommender system
    • Social behavior
    • Social network services

    ASJC Scopus subject areas

    • General Engineering
    • Computer Science Applications
    • Artificial Intelligence

    Fingerprint

    Dive into the research topics of 'Personalized recommender system based on friendship strength in social network services'. Together they form a unique fingerprint.

    Cite this