Abstract
In this work, we have developed photosensitizer-loaded bubble-generating calcium carbonate (CaCO3)-mineralized nanoparticles that have potential for ultrasound imaging (US)-guided photodynamic therapy (PDT) of tumors. A photosensitizer, chlorin e6 (Ce6)-loaded CaCO3-mineralized nanoparticles (Ce6-BMNs), was prepared using an anionic block copolymer-templated in situ mineralization method. Ce6-BMNs were composed of the Ce6-loaded CaCO3 core and the hydrated poly(ethylene glycol) (PEG) shell. Ce6-BMNs exhibited excellent stability under serum conditions. Ce6-BMNs showed enhanced echogenic US signals at tumoral acid pH by generating carbon dioxide (CO2) bubbles. Ce6-BMNs effectively inhibited Ce6 release at physiological pH (7.4). At a tumoral acidic pH (6.4), Ce6 release was accelerated with CO2 bubble generation due to the dissolution of the CaCO3 mineral core. Upon irradiation of Ce6-BMN-treated MCF-7 breast cancer cells, the cell viability dramatically decreased with increasing Ce6 concentration. The phototoxicity of the Ce6-BMNs was much higher than that of free Ce6. On the basis of tumoral pH-responsive CO2 bubble-generation and simultaneous Ce6 release at the target tumor site, these CaCO3 mineralized nanoparticles can be considered as promising theranostic nanoparticles for US imaging-guided PDT in the field of tumor therapy.
Original language | English |
---|---|
Pages (from-to) | 1219-1227 |
Number of pages | 9 |
Journal | Journal of Materials Chemistry B |
Volume | 4 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2016 Feb 21 |
Externally published | Yes |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2012R1A5A2051388) and was supported by a grant of the Korea Health Technology R&D project (HI14C0175) through the KHIDI funded by the Ministry of Health & Welfare, Republic of Korea.
Publisher Copyright:
© The Royal Society of Chemistry 2016.
ASJC Scopus subject areas
- Chemistry(all)
- Biomedical Engineering
- Materials Science(all)