Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria

Sun Young Choi, Hyun Jeong Lee, Jaeyeon Choi, Jiye Kim, Sang Jun Sim, Youngsoon Um, Yunje Kim, Taek Soon Lee, Jay D. Keasling, Han Min Woo

Research output: Contribution to journalArticlepeer-review

77 Citations (Scopus)


Background: Metabolic engineering of cyanobacteria has enabled photosynthetic conversion of CO2 to value-added chemicals as bio-solar cell factories. However, the production levels of isoprenoids in engineered cyanobacteria were quite low, compared to other microbial hosts. Therefore, modular optimization of multiple gene expressions for metabolic engineering of cyanobacteria is required for the production of farnesyl diphosphate-derived isoprenoids from CO2. Results: Here, we engineered Synechococcus elongatus PCC 7942 with modular metabolic pathways consisting of the methylerythritol phosphate pathway enzymes and the amorphadiene synthase for production of amorpha-4,11-diene, resulting in significantly increased levels (23-fold) of amorpha-4,11-diene (19.8 mg/L) in the best strain relative to a parental strain. Replacing amorphadiene synthase with squalene synthase led to the synthesis of a high amount of squalene (4.98 mg/L/OD730). Overexpression of farnesyl diphosphate synthase is the most critical factor for the significant production, whereas overexpression of 1-deoxy-d-xylulose 5-phosphate reductase is detrimental to the cell growth and the production. Additionally, the cyanobacterial growth inhibition was alleviated by expressing a terpene synthase in S. elongatus PCC 7942 strain with the optimized MEP pathway only (SeHL33). Conclusions: This is the first demonstration of photosynthetic production of amorpha-4,11-diene from CO2 in cyanobacteria and production of squalene in S. elongatus PCC 7942. Our optimized modular OverMEP strain (SeHL33) with either co-expression of ADS or SQS demonstrated the highest production levels of amorpha-4,11-diene and squalene, which could expand the list of farnesyl diphosphate-derived isoprenoids from CO2 as bio-solar cell factories.

Original languageEnglish
JournalBiotechnology for Biofuels
Issue number1
Publication statusPublished - 2016

Bibliographical note

Publisher Copyright:
© 2016 The Author(s).


  • Cyanobacteria
  • Isoprenoids
  • Metabolic engineering
  • Synthetic biology

ASJC Scopus subject areas

  • Biotechnology
  • Applied Microbiology and Biotechnology
  • Renewable Energy, Sustainability and the Environment
  • General Energy
  • Management, Monitoring, Policy and Law


Dive into the research topics of 'Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria'. Together they form a unique fingerprint.

Cite this