Abstract
Although seawater desalination is becoming an important technology for freshwater production, the presence of a high concentration of bromide in the seawater presents a major challenge. Bromide is one of the major inorganic precursors for the formation of disinfection by-products such as bromate, which is highly regulated due to its toxicity and carcinogenicity. Hence, a significant reduction of bromide ions is required prior to water disinfection. In Australia, all the desalination plants have to operate a two-stage reverse osmosis system to ensure effective bromide removal, which adds significant cost to the desalination system. In this study, a pilot-scale membrane capacitive deionisation (MCDI) was investigated as a potential alternative to the 2nd stage RO in seawater desalination. Moreover, strategies to enhance water recovery in MCDI was also carried out by using lower flow rates and shorter duration during the desorption stage. In order to reduce energy consumption in MCDI, a combined short-circuit and reverse polarity desorption is introduced. The results showed that MCDI can effectively remove bromide and dissolved salt at a much lower energy consumption compared with membrane process and that MCDI can be operated to achieve high water recovery without increasing the total energy consumption.
Original language | English |
---|---|
Article number | 114309 |
Journal | Desalination |
Volume | 479 |
DOIs | |
Publication status | Published - 2020 Apr 1 |
Bibliographical note
Funding Information:This work was supported by Korea Environment Industry & Technology Institute (KEITI) through Industrial Facilities & Infrastructure Research Program , funded by Korea Ministry of Environment (MOE) ( 1485016424 ).
Funding Information:
This work was supported by Korea Environment Industry & Technology Institute (KEITI) through Industrial Facilities & Infrastructure Research Program, funded by Korea Ministry of Environment (MOE) (1485016424).
Publisher Copyright:
© 2020
Keywords
- Bromide
- Desalination
- Disinfection by-products
- Energy
- Membrane capacitive deionisation
- Short-circuit
- Water recovery
ASJC Scopus subject areas
- Chemistry(all)
- Chemical Engineering(all)
- Materials Science(all)
- Water Science and Technology
- Mechanical Engineering