TY - GEN
T1 - Plasma control of an unstarting supersonic flow
AU - Im, Seong Kyun
AU - Do, Hyungrok
AU - Cappelli, Mark A.
N1 - Funding Information:
This research is performed through the Stanford Predictive Science Academic Alliance Program (PSAAP) Center, supported by the Department of Energy (National Nuclear Security Administration) under Award Number DE-FC52-08NA28614.
PY - 2011
Y1 - 2011
N2 - The control of unstart of a supersonic model inlet flow is demonstrated at Mach 4.7 flow conditions using a dielectric barrier discharge (DBD) actuator. Rayleigh scattering from condensed CO2 particles is used to visualize flow features such as boundary layers and shock waves at low freestream static pressure (1kPa) and temperature (60K). Three inlet wall flow conditions - a laminar boundary layer, and a tripped turbulent boundary layer with and without plasma actuation, are tested for comparison in the measured time to unstart. The delay of the unstart process, initiated by mass addition to the supersonic flow, is demonstrated through the plasma actuation of the tripped freestream boundary layer when a single DBD actuator pair is oriented parallel to the freestream flow, generating spanwise disturbances. The effect of DBD actuation on this unstart process is limited to a region within about 3mm from the exposed electrode edge.
AB - The control of unstart of a supersonic model inlet flow is demonstrated at Mach 4.7 flow conditions using a dielectric barrier discharge (DBD) actuator. Rayleigh scattering from condensed CO2 particles is used to visualize flow features such as boundary layers and shock waves at low freestream static pressure (1kPa) and temperature (60K). Three inlet wall flow conditions - a laminar boundary layer, and a tripped turbulent boundary layer with and without plasma actuation, are tested for comparison in the measured time to unstart. The delay of the unstart process, initiated by mass addition to the supersonic flow, is demonstrated through the plasma actuation of the tripped freestream boundary layer when a single DBD actuator pair is oriented parallel to the freestream flow, generating spanwise disturbances. The effect of DBD actuation on this unstart process is limited to a region within about 3mm from the exposed electrode edge.
UR - http://www.scopus.com/inward/record.url?scp=84880817771&partnerID=8YFLogxK
U2 - 10.2514/6.2011-2360
DO - 10.2514/6.2011-2360
M3 - Conference contribution
AN - SCOPUS:84880817771
SN - 9781600869426
T3 - 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference 2011
BT - 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference 2011
T2 - 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference 2011
Y2 - 11 April 2011 through 14 April 2011
ER -