Abstract
We propose and demonstrate plasmonic nano-comb (PNC) structures for efficient large-area second-harmonic generation (SHG). The PNCs are made of 250 nm-thick gold film and have equally-spaced 30 nmslits filled with ployvinylidene fluoride-co-trifluoroethylene (P(VDF-TrFE)). The PNC with 1.0 μm-spacing couples resonantly with 1.56 μm 100-fs laser beams. For the 1.0 μm-spacing PNCs under the fixed-pumppower condition, the nonlinear SHG power remains almost independent of the pump diameter ranging from 2 μm to 6 μm. The SHG power from the resonant PNC is measured to be 8 times larger than that of the single-nanogap metallic structure, when the pump beam is tightly-focused to 2 μm in diameter in both cases. This relative enhancement of the total nonlinear SHG signal power reaches up to >200 when the pump beam diameter is increased to 6 μm. We attribute this unusual phenomenon to the resonant coupling of the finite-size pump wave with the finite-size one-dimensional plasmonic mode.
Original language | English |
---|---|
Pages (from-to) | 17116-17121 |
Number of pages | 6 |
Journal | Optics Express |
Volume | 22 |
Issue number | 14 |
DOIs | |
Publication status | Published - 2014 |
Externally published | Yes |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics