Abstract
Indoor visual localization is significant for various applications such as autonomous robots, augmented reality, and mixed reality. Recent advances in visual localization have demonstrated their feasibility in large-scale indoor spaces through coarse-to-fine methods that typically employ three steps: image retrieval, pose estimation, and pose selection. However, further research is needed to improve the accuracy of large-scale indoor visual localization. We demonstrate that the limitations in the previous methods can be attributed to the sparsity of image positions in the database, which causes view-differences between a query and a retrieved image from the database. In this paper, to address this problem, we propose a novel module, named pose correction, that enables re-estimation of the pose with local feature matching in a similar view by reorganizing the local features. This module enhances the accuracy of the initially estimated pose and assigns more reliable ranks. Furthermore, the proposed method achieves a new state-of-the-art performance with an accuracy of more than 90 % within 1.0 m in the challenging indoor benchmark dataset InLoc for the first time.
Original language | English |
---|---|
Title of host publication | Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 15954-15963 |
Number of pages | 10 |
ISBN (Electronic) | 9781665428125 |
DOIs | |
Publication status | Published - 2021 |
Event | 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada Duration: 2021 Oct 11 → 2021 Oct 17 |
Publication series
Name | Proceedings of the IEEE International Conference on Computer Vision |
---|---|
ISSN (Print) | 1550-5499 |
Conference
Conference | 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 |
---|---|
Country/Territory | Canada |
City | Virtual, Online |
Period | 21/10/11 → 21/10/17 |
Bibliographical note
Funding Information:Acknowledgement. This research was supported by the Technology Innovation Program (10073166) funded By the Ministry of Trade, Industry and Energy (MOTIE, Korea).
Publisher Copyright:
© 2021 IEEE
ASJC Scopus subject areas
- Software
- Computer Vision and Pattern Recognition