Posture-Informed Muscular Force Learning for Robust Hand Pressure Estimation

Kyungjin Seo, Junghoon Seo, Hanseok Jeong, Sangpil Kim, Sang Ho Yoon

Research output: Contribution to journalConference articlepeer-review

Abstract

We present PiMForce, a novel framework that enhances hand pressure estimation by leveraging 3D hand posture information to augment forearm surface electromyography (sEMG) signals. Our approach utilizes detailed spatial information from 3D hand poses in conjunction with dynamic muscle activity from sEMG to enable accurate and robust whole-hand pressure measurements under diverse hand-object interactions. We also developed a multimodal data collection system that combines a pressure glove, an sEMG armband, and a markerless finger-tracking module. We created a comprehensive dataset from 21 participants, capturing synchronized data of hand posture, sEMG signals, and exerted hand pressure across various hand postures and hand-object interaction scenarios using our collection system. Our framework enables precise hand pressure estimation in complex and natural interaction scenarios. Our approach substantially mitigates the limitations of traditional sEMG-based or vision-based methods by integrating 3D hand posture information with sEMG signals. Video demos, data, and code are available online.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume37
Publication statusPublished - 2024
Event38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada
Duration: 2024 Dec 92024 Dec 15

Bibliographical note

Publisher Copyright:
© 2024 Neural information processing systems foundation. All rights reserved.

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Posture-Informed Muscular Force Learning for Robust Hand Pressure Estimation'. Together they form a unique fingerprint.

Cite this