TY - JOUR
T1 - Power grid estimation using electric network frequency signals
AU - Bang, Woorim
AU - Yoon, Ji Won
N1 - Funding Information:
-is work was supported by the Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (no. R7117-16-0161; Anomaly Detection Framework for Autonomous Vehicles).
Publisher Copyright:
© 2019 Woorim Bang and Ji Won Yoon.
PY - 2019
Y1 - 2019
N2 - The electric network frequency (ENF) has a statistical uniqueness according to time and location. The ENF signal is always slightly fluctuating for the load balance of the power grid around the fundamental frequency. The ENF signals can be obtained from the power line using a frequency disturbance recorder (FDR). The ENF signal can also be extracted from video files or audio files because the ENF signal is also saved due to the influence of the electromagnetic field when video files or audio files are recorded. In this paper, we propose a method to find power grid from ENF signals collected from various time and area. We analyzed ENF signals from the distribution level of the power system and online uploaded video files. Moreover, a hybrid feature extraction approach, which employs several features, is proposed to infer the location of the signal belongs regardless of the time that the signal was collected. Employing our suggested feature extraction methods, the signal which extracted from the power line can be classified 95.21% and 99.07% correctly when ENF signals have 480 and 1920 data points, respectively. In the case of ENF signals extracted from multimedia, the accuracy varies greatly according to the recorded environment such as network status and microphone quality. When constructing a feature vector from 120 data points of ENF signals, we could identify the power grid had an average of 94.17% accuracy from multimedia.
AB - The electric network frequency (ENF) has a statistical uniqueness according to time and location. The ENF signal is always slightly fluctuating for the load balance of the power grid around the fundamental frequency. The ENF signals can be obtained from the power line using a frequency disturbance recorder (FDR). The ENF signal can also be extracted from video files or audio files because the ENF signal is also saved due to the influence of the electromagnetic field when video files or audio files are recorded. In this paper, we propose a method to find power grid from ENF signals collected from various time and area. We analyzed ENF signals from the distribution level of the power system and online uploaded video files. Moreover, a hybrid feature extraction approach, which employs several features, is proposed to infer the location of the signal belongs regardless of the time that the signal was collected. Employing our suggested feature extraction methods, the signal which extracted from the power line can be classified 95.21% and 99.07% correctly when ENF signals have 480 and 1920 data points, respectively. In the case of ENF signals extracted from multimedia, the accuracy varies greatly according to the recorded environment such as network status and microphone quality. When constructing a feature vector from 120 data points of ENF signals, we could identify the power grid had an average of 94.17% accuracy from multimedia.
UR - http://www.scopus.com/inward/record.url?scp=85073150825&partnerID=8YFLogxK
U2 - 10.1155/2019/1982168
DO - 10.1155/2019/1982168
M3 - Article
AN - SCOPUS:85073150825
SN - 1939-0122
VL - 2019
JO - Security and Communication Networks
JF - Security and Communication Networks
M1 - 1982168
ER -