Abstract
Owing to the extraordinary properties, organic micro/nanocrystals are important building blocks for future low-cost and high-performance organic electronic devices. However, integrated device application of the organic micro/nanocrystals is hampered by the difficulty in high-throughput, high-precision patterning of the micro/nanocrystals. In this study, the authors demonstrate, for the first time, a facile capillary-assisted alternating-electric field method for the large-scale assembling and patterning of both 0D and 1D organic crystals. These crystals can be precisely patterned at the photolithography defined holes/channels at the substrate with the yield up to 95% in 1 mm2. The mechanism of assembly kinetics is systematically studied by the electric field distribution simulation and experimental investigations. By using the strategy, various organic micro/nanocrystal patterns are obtained by simply altering the geometries of the photoresist patterns on substrates. Moreover, ultraviolet photodetectors based on the patterned Alq3 micro/nanocrystals exhibit visible–blind photoresponse with high sensitivity as well as excellent stability and reproducibility. This work paves the way toward high-integration, high-performance organic electronic, and optoelectronic devices from the organic micro/nanocrystals.
Original language | English |
---|---|
Article number | 1604261 |
Journal | Small |
Volume | 13 |
Issue number | 25 |
DOIs | |
Publication status | Published - 2017 Jul 5 |
Keywords
- UV photodetectors
- alternating-electric field
- capillary force
- organic single crystals
- precise patterning
ASJC Scopus subject areas
- Biotechnology
- Biomaterials
- Chemistry(all)
- Materials Science(all)