Precision robotic deburring based on force control for arbitrarily shaped workpiece using CAD model matching

Hee Chan Song, Jae Bok Song

Research output: Contribution to journalArticlepeer-review

51 Citations (Scopus)


Surface finishing processes such as deburring are crucial for ensuring the quality of a workpiece and human safety by removing burrs. However, deburring involves excessive noise, dust, and vibration, which can be harmful to human workers. Thus, there has been extensive research into the use of robots to perform deburring instead of human workers. In robotic deburring, the precise tracking of the contour of an arbitrarily shaped workpiece is of major concern for precision deburring. In this study, to achieve precision deburring, a tool-path modification method based on a computer-aided design (CAD) model and direct teaching is proposed taking into consideration the position/orientation errors of the workpiece. In addition, based on this trajectory, impedance control is used to avoid applying an excessive contact force and a virtual wall is adopted to improve the force-control performance. Without knowing the position/orientation of the workpiece, the optimal deburring trajectory can be generated by matching the extracted tool path from the CAD model to the teaching points. From the simulations of the tool path modification method using an iterative closest point (ICP)-based contour matching algorithm and a series of experiments on robotic deburring, the performance of the proposed method was verified.

Original languageEnglish
Pages (from-to)85-91
Number of pages7
JournalInternational Journal of Precision Engineering and Manufacturing
Issue number1
Publication statusPublished - 2013 Jan

Bibliographical note

Funding Information:
This work was supported by the Development of Robotic Systems for High Density Manufacturing (No. 10033412) and by the Center for Autonomous Intelligent Manipulation under the Human Resources Development Program for Convergence Robot Specialists funded by the Ministry of Knowledge Economy of Korea (NIPA-2012-H1502-12-1002).


  • CAD model
  • Direct teaching
  • ICP matching algorithm
  • Impedance control
  • Robotic deburring

ASJC Scopus subject areas

  • Mechanical Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering


Dive into the research topics of 'Precision robotic deburring based on force control for arbitrarily shaped workpiece using CAD model matching'. Together they form a unique fingerprint.

Cite this