Abstract
This paper studies multiple-input multiple-output multiple access wiretap channels (MAC-WT) where an eavesdropper tries to tap the communication between multiple legitimate transmitters and a legitimate receiver. In this system, we propose precoder optimization methods at the transmitters in order to maximize the sum secrecy rate performance. Although this problem can be solved by the well-known difference of convex (DC) programming, we present a more efficient algorithm whose computational complexity is much lower than that of the conventional DC approach. By investigating the Karush-Kuhn-Tucker conditions, it is confirmed that the proposed low-complexity algorithm achieves the same performance as the conventional DC method. Our analysis also reveals that the proposed algorithm ensures global optimality for multiple-input single-output MAC-WT cases, while binary power control is optimal for single-input multiple-output scenarios. Simulation results demonstrate the efficacy of the proposed precoding methods.
Original language | English |
---|---|
Article number | 7872496 |
Pages (from-to) | 8563-8568 |
Number of pages | 6 |
Journal | IEEE Transactions on Vehicular Technology |
Volume | 66 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2017 Sept |
Bibliographical note
Publisher Copyright:© 2017 IEEE.
Keywords
- MIMO systems
- Multiple access wiretap channel (MAC-WT)
- secrecy rate maximization
ASJC Scopus subject areas
- Automotive Engineering
- Aerospace Engineering
- Electrical and Electronic Engineering
- Applied Mathematics