Abstract
A spherical Sr4Al14O25:Eu2+ phosphor for use in white-light-emitting diodes was synthesized using a liquid-state reaction with two precipitation stages. For the formation of phosphor from a precursor, the calcination temperature was 1,100°C. The particle morphology of the phosphor was changed by controlling the processing conditions. The synthesized phosphor particles were spherical with a narrow size-distribution and had mono-dispersity. Upon excitation at 395 nm, the phosphor exhibited an emission band centered at 497 nm, corresponding to the 4f65d→4f7 electronic transitions of Eu2+. The critical quenching-concentration of Eu2+ in the synthesized Sr4Al14O25:Eu2+ phosphor was 5 mol%. A phosphorconverted LED was fabricated by the combination of the optimized spherical phosphor and a near-UV 390 nm LED chip. When this pc-LED was operated under various forward-bias currents at room temperature, the pc-LED exhibited a bright blue-green emission band, and high color-stability against changes in input power. Accordingly, the prepared spherical phosphor appears to be an excellent candidate for white LED applications.
Original language | Korean |
---|---|
Pages (from-to) | 351-356 |
Number of pages | 6 |
Journal | Korean Journal of Materials Research |
Volume | 24 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2014 |
ASJC Scopus subject areas
- Materials Science(all)