Abstract
Electrospinning is a simple and versatile process to produce polymer nanofibers, which are useful for ultrafine particle filtration. In this study, a polyurethane filter with an average fiber diameter of 150-250 nm was prepared through the electrospinning process and its filtration characteristics were investigated. We found that the electrospun fiber diameter was highly dependent on the polyurethane concentration, electric field, and tip-to-collector distance. As the polyurethane concentration, electric field, and tip-to-collector distance under the same electric field increased, the fiber diameter increased. We also found that the produced filter media had a minimum collection efficiency at particles sizes from 80 to 100 nm, which implies an electrostatic attraction between the filter and the test particles. Furthermore, we observed that interception was a predominant collection mechanism at Peclet numbers higher than 10 in nanofiber filtration for ultrafine particles. A polyurethane nanofiber filter with excellent mechanical properties was prepared, and the effect of operating conditions on fiber morphology was examined. The filter fabricated by an electrospinning process is charged and has high filtration efficiency due to electrostatic force. Therefore, it can be a good alternative to control hazardous ultrafine particles.
Original language | English |
---|---|
Pages (from-to) | 322-329 |
Number of pages | 8 |
Journal | Journal of the Air and Waste Management Association |
Volume | 64 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2014 |
Bibliographical note
Funding Information:This research was financially supported by the Eco-innovation Project (Project number: 2012-00011-0002) through the Ministry of Environment, Republic of Korea.
ASJC Scopus subject areas
- Pollution
- Waste Management and Disposal
- Management, Monitoring, Policy and Law
- Atmospheric Science