Probing Brain Micro-architecture by Orientation Distribution Invariant Identification of Diffusion Compartments

the UNC/UMN Baby Connectome Project Consortium

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    9 Citations (Scopus)

    Abstract

    Precise quantification of brain tissue micro-architecture using diffusion MRI is hampered by the conflation of diffusion-attenuated signals from micro-environments that can be orientationally heterogeneous due to complex fiber configurations, such as crossing, fanning, and bending, and compartmentally heterogeneous due to variability in tissue organization. In this paper, we introduce a method, called Spherical Mean Spectrum Imaging (SMSI), for quantification of tissue microstructure. SMSI does not assume a fixed number of compartments, but characterizes the signal as a spectrum of fine- to coarse-scale diffusion processes. Using SMSI, multiple orientation distribution invariant indices can be computed, allowing for example the quantification of neurite density, microscopic fractional anisotropy per-axon axial/radial diffusivity, and free/restricted isotropic diffusivity. We show that SMSI is fast, accurate, and can overcome biases in state-of-the-art microstructure models. We demonstrate its application in probing microstructural changes in the baby brain during the first two years of life.

    Original languageEnglish
    Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
    EditorsDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
    PublisherSpringer Science and Business Media Deutschland GmbH
    Pages547-555
    Number of pages9
    ISBN (Print)9783030322472
    DOIs
    Publication statusPublished - 2019
    Event22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
    Duration: 2019 Oct 132019 Oct 17

    Publication series

    NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Volume11766 LNCS
    ISSN (Print)0302-9743
    ISSN (Electronic)1611-3349

    Conference

    Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
    Country/TerritoryChina
    CityShenzhen
    Period19/10/1319/10/17

    Bibliographical note

    Publisher Copyright:
    © 2019, Springer Nature Switzerland AG.

    ASJC Scopus subject areas

    • Theoretical Computer Science
    • General Computer Science

    Fingerprint

    Dive into the research topics of 'Probing Brain Micro-architecture by Orientation Distribution Invariant Identification of Diffusion Compartments'. Together they form a unique fingerprint.

    Cite this