TY - GEN
T1 - Progressive label fusion framework for multi-atlas segmentation by dictionary evolution
AU - Song, Yantao
AU - Wu, Guorong
AU - Sun, Quansen
AU - Bahrami, Khosro
AU - Li, Chunming
AU - Shen, Dinggang
N1 - Publisher Copyright:
© Springer International Publishing Switzerland 2015.
PY - 2015
Y1 - 2015
N2 - Accurate segmentation of anatomical structures in medical images is very important in neuroscience studies. Recently, multi-atlas patch-based label fusion methods have achieved many successes, which generally represent each target patch from an atlas patch dictionary in the image domain and then predict the latent label by directly applying the estimated representation coefficients in the label domain. However, due to the large gap between these two domains, the estimated representation coefficients in the image domain may not stay optimal for the label fusion. To overcome this dilemma, we propose a novel label fusion framework to make the weighting coefficients eventually to be optimal for the label fusion by progressively constructing a dynamic dictionary in a layer-by-layer manner, where a sequence of intermediate patch dictionaries gradually encode the transition from the patch representation coefficients in image domain to the optimal weights for label fusion. Our proposed framework is general to augment the label fusion performance of the current state-of-the-art methods. In our experiments, we apply our proposed method to hippocampus segmentation on ADNI dataset and achieve more accurate labeling results, compared to the counterpart methods with single-layer dictionary.
AB - Accurate segmentation of anatomical structures in medical images is very important in neuroscience studies. Recently, multi-atlas patch-based label fusion methods have achieved many successes, which generally represent each target patch from an atlas patch dictionary in the image domain and then predict the latent label by directly applying the estimated representation coefficients in the label domain. However, due to the large gap between these two domains, the estimated representation coefficients in the image domain may not stay optimal for the label fusion. To overcome this dilemma, we propose a novel label fusion framework to make the weighting coefficients eventually to be optimal for the label fusion by progressively constructing a dynamic dictionary in a layer-by-layer manner, where a sequence of intermediate patch dictionaries gradually encode the transition from the patch representation coefficients in image domain to the optimal weights for label fusion. Our proposed framework is general to augment the label fusion performance of the current state-of-the-art methods. In our experiments, we apply our proposed method to hippocampus segmentation on ADNI dataset and achieve more accurate labeling results, compared to the counterpart methods with single-layer dictionary.
UR - http://www.scopus.com/inward/record.url?scp=84951754976&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-24574-4_23
DO - 10.1007/978-3-319-24574-4_23
M3 - Conference contribution
AN - SCOPUS:84951754976
SN - 9783319245737
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 190
EP - 197
BT - Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 - 18th International Conference, Proceedings
A2 - Frangi, Alejandro F.
A2 - Navab, Nassir
A2 - Hornegger, Joachim
A2 - Wells, William M.
PB - Springer Verlag
T2 - 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015
Y2 - 5 October 2015 through 9 October 2015
ER -