Proposal of new combination criterion for pipe with circumferential multiple cracks based on ductile failure simulation

Myeong Woo Lee, Kunio Hasegawa, Yun Jae Kim

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    1 Citation (Scopus)

    Abstract

    In this paper, the combination rule for circumferential multiple-cracked pipe assessment is investigated using finite element damage analysis. The FE damage analysis based on the stress-modified fracture strain model is validated against limited fracture test data of two circumferential surface cracked pipes. Then systematic parametric study is performed using FE damage analysis for symmetrical surface cracked pipes. Failure bending stresses are calculated using the combination rule and the net-section collapse load approach for single crack provided in ASME BPV Code. It is found that predicted failure bending stress using the combination rule might be non-conservative when the distance between two cracks is short. To overcome the problem, a new combination criterion based on crack dimensions is proposed and compared with numerical data.

    Original languageEnglish
    Title of host publicationCodes and Standards
    PublisherAmerican Society of Mechanical Engineers (ASME)
    ISBN (Electronic)9780791851586
    DOIs
    Publication statusPublished - 2018
    EventASME 2018 Pressure Vessels and Piping Conference, PVP 2018 - Prague, Czech Republic
    Duration: 2018 Jul 152018 Jul 20

    Publication series

    NameAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
    Volume1A-2018
    ISSN (Print)0277-027X

    Other

    OtherASME 2018 Pressure Vessels and Piping Conference, PVP 2018
    Country/TerritoryCzech Republic
    CityPrague
    Period18/7/1518/7/20

    Bibliographical note

    Funding Information:
    This research was supported by National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and Future Planning. (NRF-2016M2A8A1952771, NRF-2017R1A2B2009759)

    Publisher Copyright:
    Copyright © 2018 ASME.

    ASJC Scopus subject areas

    • Mechanical Engineering

    Fingerprint

    Dive into the research topics of 'Proposal of new combination criterion for pipe with circumferential multiple cracks based on ductile failure simulation'. Together they form a unique fingerprint.

    Cite this