TY - GEN
T1 - Prostate segmentation by sparse representation based classification
AU - Gao, Yaozong
AU - Liao, Shu
AU - Shen, Dinggang
N1 - Publisher Copyright:
© Springer-Verlag Berlin Heidelberg 2012.
PY - 2012
Y1 - 2012
N2 - Accurate segmentation of prostate in CT images is important in image-guided radiotherapy. However, it is difficult to localize the prostate in CT images due to low image contrast, unpredicted motion and large appearance variations across different treatment days. To address these issues, we propose a sparse representation based classification method to accurately segment the prostate. The main contributions of this paper are: (1) A discriminant dictionary learning technique is proposed to overcome the limitation of the traditional Sparse Representation based Classifier (SRC). (2) Context features are incorporated into SRC to refine the prostate boundary in an iterative scheme. (3) A residue-based linear regression model is trained to increase the classification performance of SRC and extend it from hard classification to soft classification. To segment the prostate, the new treatment image is first rigidly aligned to the planning image space based on the pelvic bones. Then two sets of location-adaptive SRCs along two coordinate directions are applied on the aligned treatment image to produce a probability map, based on which all previously segmented images of the same patient are rigidly aligned onto the new treatment image and majority voting strategy is further adopted to finally segment the prostate in the new treatment image. The proposed method has been evaluated on a CT dataset consisting of 15 patients and 230 CT images. Promising results have been achieved.
AB - Accurate segmentation of prostate in CT images is important in image-guided radiotherapy. However, it is difficult to localize the prostate in CT images due to low image contrast, unpredicted motion and large appearance variations across different treatment days. To address these issues, we propose a sparse representation based classification method to accurately segment the prostate. The main contributions of this paper are: (1) A discriminant dictionary learning technique is proposed to overcome the limitation of the traditional Sparse Representation based Classifier (SRC). (2) Context features are incorporated into SRC to refine the prostate boundary in an iterative scheme. (3) A residue-based linear regression model is trained to increase the classification performance of SRC and extend it from hard classification to soft classification. To segment the prostate, the new treatment image is first rigidly aligned to the planning image space based on the pelvic bones. Then two sets of location-adaptive SRCs along two coordinate directions are applied on the aligned treatment image to produce a probability map, based on which all previously segmented images of the same patient are rigidly aligned onto the new treatment image and majority voting strategy is further adopted to finally segment the prostate in the new treatment image. The proposed method has been evaluated on a CT dataset consisting of 15 patients and 230 CT images. Promising results have been achieved.
UR - http://www.scopus.com/inward/record.url?scp=84872929584&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-33454-2_56
DO - 10.1007/978-3-642-33454-2_56
M3 - Conference contribution
C2 - 23286162
AN - SCOPUS:84872929584
SN - 9783642334535
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 451
EP - 458
BT - Medical Image Computing and Computer-Assisted Intervention, MICCAI2012 - 15th International Conference, Proceedings
A2 - Ayache, Nicholas
A2 - Delingette, Herve
A2 - Golland, Polina
A2 - Mori, Kensaku
PB - Springer Verlag
T2 - 15th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2012
Y2 - 1 October 2012 through 5 October 2012
ER -