TY - GEN
T1 - Pushing motion control of n passive off-hooked trailers by a car-like mobile robot
AU - Yoo, Kwanghyun
AU - Chung, Woojin
PY - 2010
Y1 - 2010
N2 - There are two different motions of a trailer system that consists of a car and n passive off-hooked trailers. When a car "pulls" n passive trailers, a trailer system moves forward. A trailer system moves backward when a car "pushes" n passive trailers. Backing up a trailer system is difficult because it is an open loop unstable problem. In this paper, we investigate the backward motion control problem of a car with n passive trailers. We have shown that n passive trailers can be successfully controlled by an omni-directional mobile robot in our prior works. Unlike an omni-directional robot, a car-like mobile robot has nonholonomic constraints and limitations of the steering angle. For these reasons, the backward motion control problem of a car-like mobile robot with n passive trailers is not trivial. In spite of difficulties, backing up a trailer system is useful for parking control. In this study, we proposed a mechanical alteration which is connecting n passive trailers to the front bumper of a car to improve the backward motion control performance. By adopting the new design, a car pushes n passive trailers by its forward motion. A practical trailer-pushing control algorithm was also proposed. Stability analysis of the controller under kinematic modeling error was presented. Theoretical verification and experimental results proved that the control strategy of pushing n passive trailers by forward motion of a car can be successfully implemented.
AB - There are two different motions of a trailer system that consists of a car and n passive off-hooked trailers. When a car "pulls" n passive trailers, a trailer system moves forward. A trailer system moves backward when a car "pushes" n passive trailers. Backing up a trailer system is difficult because it is an open loop unstable problem. In this paper, we investigate the backward motion control problem of a car with n passive trailers. We have shown that n passive trailers can be successfully controlled by an omni-directional mobile robot in our prior works. Unlike an omni-directional robot, a car-like mobile robot has nonholonomic constraints and limitations of the steering angle. For these reasons, the backward motion control problem of a car-like mobile robot with n passive trailers is not trivial. In spite of difficulties, backing up a trailer system is useful for parking control. In this study, we proposed a mechanical alteration which is connecting n passive trailers to the front bumper of a car to improve the backward motion control performance. By adopting the new design, a car pushes n passive trailers by its forward motion. A practical trailer-pushing control algorithm was also proposed. Stability analysis of the controller under kinematic modeling error was presented. Theoretical verification and experimental results proved that the control strategy of pushing n passive trailers by forward motion of a car can be successfully implemented.
UR - http://www.scopus.com/inward/record.url?scp=77955819623&partnerID=8YFLogxK
U2 - 10.1109/ROBOT.2010.5509235
DO - 10.1109/ROBOT.2010.5509235
M3 - Conference contribution
AN - SCOPUS:77955819623
SN - 9781424450381
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 4928
EP - 4933
BT - 2010 IEEE International Conference on Robotics and Automation, ICRA 2010
T2 - 2010 IEEE International Conference on Robotics and Automation, ICRA 2010
Y2 - 3 May 2010 through 7 May 2010
ER -