Quantitative proteome analysis of age-related changes in mouse gastrocnemius muscle using mTRAQ

Chae Young Hwang, Kyutae Kim, Jeong Yi Choi, Young Jae Bahn, Seung Min Lee, Yoon Ki Kim, Cheolju Lee, Ki Sun Kwon

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)


Aging is associated with a progressive loss of skeletal muscular function that often leads to progressive disability and loss of independence. Although muscle aging is well documented, the molecular mechanisms of this condition still remain unclear. To gain greater insight into the changes associated with aging of skeletal muscle, we performed quantitative proteomic analyses on young (6 months) and aged (27 months) mouse gastrocnemius muscles using mTRAQ stable isotope mass tags. We identified and quantified a total of 4585 peptides corresponding to 236 proteins (protein probability >0.9). Among them, 33 proteins were more than 1.5-fold upregulated and 20 proteins were more than 1.5-fold downregulated in aged muscle compared with young muscle. An ontological analysis revealed that differentially expressed proteins belonged to distinct functional groups, including ion homeostasis, energy metabolism, protein turnover, and Ca2+ signaling. Identified proteins included aralar1, β-enolase, fatty acid-binding protein 3, 3-hydroxyacyl-CoA dehydrogenase (Hadh), F-box protein 22, F-box, and leucine-rich repeat protein 18, voltage-dependent L-type calcium channel subunit beta-1, ryanodine receptor (RyR), and calsequestrin. Ectopic expression of calsequestrin in C2C12 myoblast resulted in decreased activity of nuclear factor of activated T-cells and increased levels of atrogin-1 and MuRF1 E3 ligase, suggesting that these differentially expressed proteins are involved in muscle aging.

Original languageEnglish
Pages (from-to)121-132
Number of pages12
Issue number1
Publication statusPublished - 2014 Jan


  • Aging
  • Animal proteomics
  • Biomarker
  • Skeletal muscle

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology


Dive into the research topics of 'Quantitative proteome analysis of age-related changes in mouse gastrocnemius muscle using mTRAQ'. Together they form a unique fingerprint.

Cite this