Quaternized Amphiphilic Block Copolymers/Graphene Oxide and a Poly(vinyl alcohol) Coating Layer on Graphene Oxide/Poly(vinylidene fluoride) Electrospun Nanofibers for Superhydrophilic and Antibacterial Properties

Jeong Ann Park, Kie Yong Cho, Chee Hun Han, Aram Nam, Jae Hyun Kim, Sang Hyup Lee, Jae Woo Choi

    Research output: Contribution to journalArticlepeer-review

    36 Citations (Scopus)

    Abstract

    Poly(vinylidene fluoride) (PVDF) is common polymer for electrospinning, however, its high hydrophobicity is a major drawback, which cause fouling. To introduce hydrophilicity and antibacterial activity, quaternary ammonium-functionalized amphiphilic diblock copolymers were synthesized and blended with a PVDF/graphene oxide (GO) solution, then, electrospun and coated with a hydrophilic polymer, poly(vinyl alcohol) (PVA). The amphiphilic block copolymer, consisting of a hydrophobic poly(methyl methacrylate) block and a hydrophilic poly[N,N-2-(dimethylamino)-ethyl methacrylate) block (PMMA-b-PDMAEMA), was synthesized. Polymeric quaternary ammonium with three different alkyl chain lengths (C2, C4, and C8) were successfully introduced to obtain as q-PMMA-b-PDMAEMA. The q-PMMA-b-PDMAEMA in the nanofiber matrix was confirmed by C=O bands (1734 cm−1) in the Fourier transform infrared spectra. Nano-sized spherical protuberances were distributed on the surface as revealed by field emission scanning and transmission electron microscopies. The PVDF/GO/q-PMMA-b-PDMAEMA@PVA nanofibers has superhydrophilic properties (water contact angle = 0–20°) and the pure water flux was generally improved by increasing the alkyl chain length. When introducing the longest alkyl chain (C8,OBC), the total fouling ratio was the lowest (49.99%) and the bacteria removal capacities after 60 min were the highest for both Escherichia coli (4.2 × 105 CFU/mg) and Staphylococcus aureus (6.1 × 105 CFU/mg) via growth inhibition and cytoplasmic membrane damage.

    Original languageEnglish
    Article number383
    JournalScientific reports
    Volume9
    Issue number1
    DOIs
    Publication statusPublished - 2019 Dec 1

    Bibliographical note

    Publisher Copyright:
    © 2019, The Author(s).

    ASJC Scopus subject areas

    • General

    Fingerprint

    Dive into the research topics of 'Quaternized Amphiphilic Block Copolymers/Graphene Oxide and a Poly(vinyl alcohol) Coating Layer on Graphene Oxide/Poly(vinylidene fluoride) Electrospun Nanofibers for Superhydrophilic and Antibacterial Properties'. Together they form a unique fingerprint.

    Cite this