Reactivation of fear memory renders consolidated amygdala synapses labile

Jeongyeon Kim, Beomjong Song, Ingie Hong, Jihye Kim, Junuk Lee, Sungmo Park, Jae Yong Eom, C. Justin Lee, Sukwon Lee, Sukwoo Choi

Research output: Contribution to journalArticlepeer-review

44 Citations (Scopus)


It is believed that memory reactivation transiently renders consolidated memory labile and that this labile or deconsolidated memory is reconsolidated in a protein synthesis-dependent manner. The synaptic correlate of memory deconsolidation upon reactivation, however, has not been fully characterized. Here, we show that 3,5-dihydroxyphenylglycine (DHPG), an agonist for group I metabotropic glutamate receptors (mGluRI), induces synaptic depotentiation only at thalamic input synapses onto the lateral amygdala (T-LA synapses) where synaptic potentiation is consolidated, but not at synapses where synaptic potentiation is not consolidated. Using this mGluRI-induced synaptic depotentiation (mGluRI-depotentiation) as a marker of consolidated synapses, we found that mGluRI-depotentiation correlated well with the state of memory deconsolidation and reconsolidation in a predictable manner. DHPG failed to induce mGluRI-depotentiation in slices prepared immediately after reactivation when the reactivated memory was deconsolidated. DHPG induced mGluRI-depotentiation 1 h after reactivation when the reactivated memory was reconsolidated, but it failed to do so when reconsolidation was blocked by a protein synthesis inhibitor. To test the memory-specificity of mGluRI-depotentiation, conditioned fear was acquired twice using two discriminative tones (2.8 and 20 kHz). Under this condition, mGluRI-depotentiation was fully impaired in slices prepared immediately after reactivation with both tones, whereas mGluRI-depotentiation was partially impaired immediately after reactivation with the 20 kHz tone. Consistently, microinjection of DHPG into the LA1 h after reactivation reduced fear memory retention, whereas DHPG injection immediately after reactivation failed to do so. Our findings suggest that, upon memory reactivation, consolidated T-LA synapses enter a temporary labile state, displaying insensitivity to mGluRI-depotentiation.

Original languageEnglish
Pages (from-to)9631-9640
Number of pages10
JournalJournal of Neuroscience
Issue number28
Publication statusPublished - 2010 Jul 14

ASJC Scopus subject areas

  • General Neuroscience


Dive into the research topics of 'Reactivation of fear memory renders consolidated amygdala synapses labile'. Together they form a unique fingerprint.

Cite this