Receding Horizon Robust Control for Nonlinear Systems Based on Linear Differential Inclusion of Neural Networks

    Research output: Contribution to journalArticlepeer-review

    6 Citations (Scopus)

    Abstract

    In this paper, we present a new receding horizon neural robust control scheme for a class of nonlinear systems based on the linear differential inclusion (LDI) representation of neural networks. First, we propose a linear matrix inequality (LMI) condition on the terminal weighting matrix for a receding horizon neural robust control scheme. This condition guarantees the nonincreasing monotonicity of the saddle point value of the finite horizon dynamic game. We then propose a receding horizon neural robust control scheme for nonlinear systems, which ensures the infinite horizon robust performance and the internal stability of closed-loop systems. Since the proposed control scheme can effectively deal with input and state constraints in an optimization problem, it does not cause the instability problem or give the poor performance associated with the existing neural robust control schemes.

    Original languageEnglish
    Pages (from-to)659-678
    Number of pages20
    JournalJournal of Optimization Theory and Applications
    Volume160
    Issue number2
    DOIs
    Publication statusPublished - 2014 Feb

    Keywords

    • Linear differential inclusion (LDI)
    • Neural networks
    • Nonlinear systems
    • Receding horizon control

    ASJC Scopus subject areas

    • Management Science and Operations Research
    • Control and Optimization
    • Applied Mathematics

    Fingerprint

    Dive into the research topics of 'Receding Horizon Robust Control for Nonlinear Systems Based on Linear Differential Inclusion of Neural Networks'. Together they form a unique fingerprint.

    Cite this