Reconstruction of dose distribution in in-beam PET for carbon therapy

Kwangdon Kim, Seungbin Bae, Kisung Lee, Yonghyun Chung, Sujung An, Jinhun Joung

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

There are two main artifacts in reconstructed images from in-beam positron emission tomography(PET). Unlike generic PET, in-beam PET uses the annihilation photons which occur during heavy ion therapy. Therefore, the geometry of in-beam PET is not a full ring, but a partial ring in order for the hardrons to arrive the tumor without penetration of detector blocks. The partial ring, however, causes truncation in projection data, due to an absence of detector modules in the openings. The other is ring artifact caused by the gaps between detector modules which can be also founded in generic PET. In this study, we aim to investigate the effect of gaps in reconstructed images and propose possible solutions to compensate the artifacts. We acquired the data by GATE v6.1 with initial ion energies 170, 290, 350AMeV of carbon beams. Each detector module consists of a 13 by 13 LYSO crystal array. The dimension of a crystal was 4mm * 4mm * 20 mm and the radius of inner circle of the gantry was 15cm.

Original languageEnglish
Title of host publication2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, NSS/MIC 2012
Pages2433-2436
Number of pages4
DOIs
Publication statusPublished - 2012
Externally publishedYes
Event2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, NSS/MIC 2012 - Anaheim, CA, United States
Duration: 2012 Oct 292012 Nov 3

Publication series

NameIEEE Nuclear Science Symposium Conference Record
ISSN (Print)1095-7863

Other

Other2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, NSS/MIC 2012
Country/TerritoryUnited States
CityAnaheim, CA
Period12/10/2912/11/3

ASJC Scopus subject areas

  • Radiation
  • Nuclear and High Energy Physics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Reconstruction of dose distribution in in-beam PET for carbon therapy'. Together they form a unique fingerprint.

Cite this