Abstract
This study examines the effect of hydrogen peroxide (H2O2) on the open-circuit voltage (OCV) of a proton exchange membrane fuel cell (PEMFC) and the reduction of H2O2 in the membrane using a ruthenium/carbon catalyst (Ru/C) at the anode. Each cathode and anode potential of the PEMFC in the presence of H2O2 is examined by constructing a half-cell using 1.0 M H2SO4 solution as an electrolyte and Ag/AgCl as the reference electrode. H2O2 is added to the H2SO4 solution and the half-cell potential is measured at each H2O2 concentration. The cathode potential is affected by the H2O2 concentration while the anode potential remains stable. A Ru catalyst is used to reduce the level of H2O2 formation through O2 cross-over at the interface of a membrane and the anode. The Ru catalyst is known to produce less H2O2 through oxygen reduction at the anode of PEMFC than a Pt catalyst. A Ru/C layer is placed between the Nafion® 112 membrane and anode catalyst layer and the cell voltage under open-circuit condition is measured. A single cell is constructed to compare the OCV of the Pt/C only anode with that of the Ru/C-layered anode. The level of hydrogen cross-over and the OCV are determined after operation at a current density of 1 A cm-2 for 10 h and stabilization at open-circuit for 1 h to obtain an equilibrium state in the cell. Although there is an increase in the OCV of the cell with the Ru/C layer at the anode, excessive addition of Ru/C has an adverse effect on cell performance.
Original language | English |
---|---|
Pages (from-to) | 281-285 |
Number of pages | 5 |
Journal | Journal of Power Sources |
Volume | 170 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2007 Jul 10 |
Keywords
- Hydrogen peroxide
- Open-circuit voltage
- Oxygen cross-over
- Proton exchange membrane fuel cell
- Ruthenium/carbon catalyst
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Physical and Theoretical Chemistry
- Electrical and Electronic Engineering