Region-wise stochastic pattern modeling for autism spectrum disorder identification and temporal dynamics analysis

Eunji Jun, Heung Il Suk

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Many studies in the literature have validated the use of resting-state fMRI (rs-fMRI) for brain disorder/disease identification. Unlike the existing methods that mostly first estimate functional connectivity and then extract features with a graph theory, in this paper, we propose a novel method that directly models the temporal stochastic patterns inherent in BOLD signals for each Region Of Interest (ROI) individually. Specifically, we model temporal BOLD signal fluctuation of an individual ROI by means of Hidden Markov Models (HMMs), and then compute a regional BOLD signal likelihood with the trained HMMs. By regarding the BOLD signal likelihood of ROIs over a whole brain as features, we build a classifier that can discriminate subjects with Autism Spectrum Disorder (ASD) from Normal healthy Controls (NC). In addition, we also devise a method to further investigate the characteristics of temporal dynamics in rs-fMRI estimated by HMMs. For group comparison, we use the metrics of state occupancy rate and lifetime of the optimal hidden states that best represent the temporal BOLD signals. In our experiments with ABIDE cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies among competing methods. We could also identify the group differences in temporal dynamics between ASD and NC in terms of state occupancy rate and lifetime of individual states.

Original languageEnglish
Title of host publicationConnectomics in NeuroImaging - 1st International Workshop, CNI 2017 Held in Conjunction with MICCAI 2017, Proceedings
EditorsLeonardo Bonilha, Guorong Wu, Paul Laurienti, Brent C. Munsell
PublisherSpringer Verlag
Pages143-151
Number of pages9
ISBN (Print)9783319671581
DOIs
Publication statusPublished - 2017
Event1st International Workshop on Connectomics in NeuroImaging, CNI 2017 held in conjunction with the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2017 - Quebec City, Canada
Duration: 2017 Sept 142017 Sept 14

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10511 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other1st International Workshop on Connectomics in NeuroImaging, CNI 2017 held in conjunction with the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2017
Country/TerritoryCanada
CityQuebec City
Period17/9/1417/9/14

Bibliographical note

Funding Information:
Acknowledgement. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1C1A1A01052216) and also partially supported by Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government (No. 2017-0-00451).

Publisher Copyright:
© 2017, Springer International Publishing AG.

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint

Dive into the research topics of 'Region-wise stochastic pattern modeling for autism spectrum disorder identification and temporal dynamics analysis'. Together they form a unique fingerprint.

Cite this