TY - GEN
T1 - Registration-free infant cortical surface parcellation using deep convolutional neural networks
AU - Wu, Zhengwang
AU - Li, Gang
AU - Wang, Li
AU - Shi, Feng
AU - Lin, Weili
AU - Gilmore, John H.
AU - Shen, Dinggang
N1 - Funding Information:
This work is partially supported by NIH grants: MH100217, MH107815, MH108914, MH109773, MH110274, MH116225 and MH117943.
Publisher Copyright:
© Springer Nature Switzerland AG 2018.
PY - 2018
Y1 - 2018
N2 - Automatic parcellation of infant cortical surfaces into anatomical regions of interest (ROIs) is of great importance in brain structural and functional analysis. Conventional cortical surface parcellation methods suffer from two main issues: (1) Cortical surface registration is needed for establishing the atlas-to-individual correspondences; (2) The mapping from cortical shape to the parcellation labels requires designing of specific hand-crafted features. To address these issues, in this paper, we propose a novel cortical surface parcellation method, which is free of surface registration and designing of hand-crafted features, based on deep convolutional neural network (DCNN). Our main idea is to formulate surface parcellation as a patch-wise classification problem. Briefly, we use DCNN to train a classifier, whose inputs are the local cortical surface patches with multi-channel cortical shape descriptors such as mean curvature, sulcal depth, and average convexity; while the outputs are the parcellation label probabilities of cortical vertices. To enable effective convolutional operation on the surface data, we project each spherical surface patch onto its intrinsic tangent plane by a geodesic-distance-preserving mapping. Then, after classification, we further adopt the graph cuts method to improve spatial consistency of the parcellation. We have validated our method based on 90 neonatal cortical surfaces with manual parcellations, showing superior accuracy and efficiency of our proposed method.
AB - Automatic parcellation of infant cortical surfaces into anatomical regions of interest (ROIs) is of great importance in brain structural and functional analysis. Conventional cortical surface parcellation methods suffer from two main issues: (1) Cortical surface registration is needed for establishing the atlas-to-individual correspondences; (2) The mapping from cortical shape to the parcellation labels requires designing of specific hand-crafted features. To address these issues, in this paper, we propose a novel cortical surface parcellation method, which is free of surface registration and designing of hand-crafted features, based on deep convolutional neural network (DCNN). Our main idea is to formulate surface parcellation as a patch-wise classification problem. Briefly, we use DCNN to train a classifier, whose inputs are the local cortical surface patches with multi-channel cortical shape descriptors such as mean curvature, sulcal depth, and average convexity; while the outputs are the parcellation label probabilities of cortical vertices. To enable effective convolutional operation on the surface data, we project each spherical surface patch onto its intrinsic tangent plane by a geodesic-distance-preserving mapping. Then, after classification, we further adopt the graph cuts method to improve spatial consistency of the parcellation. We have validated our method based on 90 neonatal cortical surfaces with manual parcellations, showing superior accuracy and efficiency of our proposed method.
UR - http://www.scopus.com/inward/record.url?scp=85053926264&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-00931-1_77
DO - 10.1007/978-3-030-00931-1_77
M3 - Conference contribution
AN - SCOPUS:85053926264
SN - 9783030009304
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 672
EP - 680
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
A2 - Frangi, Alejandro F.
A2 - Davatzikos, Christos
A2 - Fichtinger, Gabor
A2 - Alberola-López, Carlos
A2 - Schnabel, Julia A.
PB - Springer Verlag
T2 - 21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
Y2 - 16 September 2018 through 20 September 2018
ER -