TY - GEN
T1 - Registration of longitudinal image sequences with implicit template and spatial-temporal heuristics
AU - Wu, Guorong
AU - Wang, Qian
AU - Jia, Hongjun
AU - Shen, Dinggang
PY - 2010
Y1 - 2010
N2 - Accurate measurement of longitudinal changes of anatomical structure is important and challenging in many clinical studies. Also, for identification of disease-affected regions due to the brain disease, it is extremely necessary to register a population data to the common space simultaneously. In this paper, we propose a new method for simultaneous longitudinal and groupwise registration of a set of longitudinal data acquired from multiple subjects. Our goal is to 1) consistently measure the longitudinal changes from a sequence of longitudinal data acquired from the same subject; and 2) jointly align all image data (acquired from all time points of all subjects) to a hidden common space. To achieve these two goals, we first introduce a set of temporal fiber bundles to explore the spatial-temporal behavior of anatomical changes in each longitudinal data of the same subject. Then, a probabilistic model is built upon the hidden state of spatial smoothness and temporal continuity on the fibers. Finally, the transformation fields that connect each time-point image of each subject to the common space are simultaneously estimated by the expectation maximization (EM) approach, via the maximum a posterior (MAP) estimation of probabilistic models. Promising results are obtained to quantitatively measure the longitudinal changes of hippocampus volume, indicating better performance of our method than the conventional pairwise methods.
AB - Accurate measurement of longitudinal changes of anatomical structure is important and challenging in many clinical studies. Also, for identification of disease-affected regions due to the brain disease, it is extremely necessary to register a population data to the common space simultaneously. In this paper, we propose a new method for simultaneous longitudinal and groupwise registration of a set of longitudinal data acquired from multiple subjects. Our goal is to 1) consistently measure the longitudinal changes from a sequence of longitudinal data acquired from the same subject; and 2) jointly align all image data (acquired from all time points of all subjects) to a hidden common space. To achieve these two goals, we first introduce a set of temporal fiber bundles to explore the spatial-temporal behavior of anatomical changes in each longitudinal data of the same subject. Then, a probabilistic model is built upon the hidden state of spatial smoothness and temporal continuity on the fibers. Finally, the transformation fields that connect each time-point image of each subject to the common space are simultaneously estimated by the expectation maximization (EM) approach, via the maximum a posterior (MAP) estimation of probabilistic models. Promising results are obtained to quantitatively measure the longitudinal changes of hippocampus volume, indicating better performance of our method than the conventional pairwise methods.
UR - http://www.scopus.com/inward/record.url?scp=79956212443&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-15745-5_76
DO - 10.1007/978-3-642-15745-5_76
M3 - Conference contribution
C2 - 20879367
AN - SCOPUS:79956212443
SN - 3642157440
SN - 9783642157448
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 618
EP - 625
BT - Medical Image Computing and Computer-Assisted Intervention, MICCAI2010 - 13th International Conference, Proceedings
T2 - 13th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2010
Y2 - 20 September 2010 through 24 September 2010
ER -