Abstract
Exendin-4, a 39 amino acid peptide isolated from the saliva of the Gila monster, plays an important role in regulating glucose homeostasis, and is used clinically for the treatment of type 2 diabetes. Exendin-4 shares 53% sequence identity with the incretin hormone glucagon-like peptide 1 (GLP-1) but, unlike GLP-1, is highly resistant to proteolytic enzymes such as dipeptidyl peptidase IV (DPP-IV) and neutral endopeptidase 24.11 (NEP 24.11). Herein, we focused on the structure and function of the C-terminal Trp-cage of exendin-4, and suggest that it may be structurally required for resistance to proteolysis by NEP 24.11. Using a series of substitutions and truncations of the C-terminal Trp-cage, we found that residues 1–33, including the N-terminal and helical regions of wild-type (WT) exendin-4, is the minimum motif required for both high peptidase resistance and potent activity toward the GLP-1 receptor comparable to WT exendin-4. To improve the therapeutic utility of C-terminally truncated exendin-4, we incorporated various fatty acids into exendin-4(1–33) in which Ser33 was substituted with Lys for acylation. Exendin-4(1–32)K-capric acid exhibited the most well balanced activity, with much improved therapeutic utility for regulating blood glucose and body weight relative to WT exendin-4.
Original language | English |
---|---|
Pages (from-to) | 59-68 |
Number of pages | 10 |
Journal | Biochemical Pharmacology |
Volume | 151 |
DOIs | |
Publication status | Published - 2018 May |
Keywords
- Diabetes
- Exendin-4
- Fatty acid
- GLP-1 receptor
- Neutral endopeptidase 24.11
ASJC Scopus subject areas
- Biochemistry
- Pharmacology