TY - GEN
T1 - Rethinking Coarse-to-Fine Approach in Single Image Deblurring
AU - Cho, Sung Jin
AU - Ji, Seo Won
AU - Hong, Jun Pyo
AU - Jung, Seung Won
AU - Ko, Sung Jea
N1 - Funding Information:
This work was supported by Samsung Electronics Co., Ltd (IO201210-08026-01)
Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - Coarse-to-fine strategies have been extensively used for the architecture design of single image deblurring networks. Conventional methods typically stack sub-networks with multi-scale input images and gradually improve sharpness of images from the bottom sub-network to the top sub-network, yielding inevitably high computational costs. Toward a fast and accurate deblurring network design, we revisit the coarse-to-fine strategy and present a multi-input multi-output U-net (MIMO-UNet). The MIMO-UNet has three distinct features. First, the single encoder of the MIMO-UNet takes multi-scale input images to ease the difficulty of training. Second, the single decoder of the MIMO-UNet outputs multiple deblurred images with different scales to mimic multi-cascaded U-nets using a single U-shaped network. Last, asymmetric feature fusion is introduced to merge multi-scale features in an efficient manner. Extensive experiments on the GoPro and RealBlur datasets demonstrate that the proposed network outperforms the state-of-the-art methods in terms of both accuracy and computational complexity. Source code is available for research purposes at https://github.com/chosj95/MIMO-UNet.
AB - Coarse-to-fine strategies have been extensively used for the architecture design of single image deblurring networks. Conventional methods typically stack sub-networks with multi-scale input images and gradually improve sharpness of images from the bottom sub-network to the top sub-network, yielding inevitably high computational costs. Toward a fast and accurate deblurring network design, we revisit the coarse-to-fine strategy and present a multi-input multi-output U-net (MIMO-UNet). The MIMO-UNet has three distinct features. First, the single encoder of the MIMO-UNet takes multi-scale input images to ease the difficulty of training. Second, the single decoder of the MIMO-UNet outputs multiple deblurred images with different scales to mimic multi-cascaded U-nets using a single U-shaped network. Last, asymmetric feature fusion is introduced to merge multi-scale features in an efficient manner. Extensive experiments on the GoPro and RealBlur datasets demonstrate that the proposed network outperforms the state-of-the-art methods in terms of both accuracy and computational complexity. Source code is available for research purposes at https://github.com/chosj95/MIMO-UNet.
UR - http://www.scopus.com/inward/record.url?scp=85120301137&partnerID=8YFLogxK
U2 - 10.1109/ICCV48922.2021.00460
DO - 10.1109/ICCV48922.2021.00460
M3 - Conference contribution
AN - SCOPUS:85120301137
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 4621
EP - 4630
BT - Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Y2 - 11 October 2021 through 17 October 2021
ER -