Revealing Developmental Regionalization of Infant Cerebral Cortex Based on Multiple Cortical Properties

Fan Wang, Chunfeng Lian, Zhengwang Wu, Li Wang, Weili Lin, John H. Gilmore, Dinggang Shen, Gang Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

The human brain develops dynamically and regionally heterogeneously during the first two postnatal years. Cortical developmental regionalization, i.e., the landscape of cortical heterogeneity in development, reflects the organization of underlying microstructures, which are closely related to the functional principles of the cortex. Therefore, prospecting early cortical developmental regionalization can provide neurobiologically meaningful units for precise region localization, which will advance our understanding on brain development in this critical period. However, due to the absence of dedicated computational tools and large-scale datasets, our knowledge on early cortical developmental regionalization still remains intact. To fill both the methodological and knowledge gaps, we propose to explore the cortical developmental regionalization using a novel method based on nonnegative matrix factorization (NMF), due to its ability in analyzing complex high-dimensional data by representing data using several bases in a data-driven way. Specifically, a novel multi-view NMF (MV-NMF) method is proposed, in which multiple distinct and complementary cortical properties (i.e., multiple views) are jointly considered to provide comprehensive observation of cortical regionalization process. To ensure the sparsity of the discovered regions, an orthogonal constraint defined in Stiefel manifold is imposed in our MV-NMF method. Meanwhile, a graph-induced constraint is also included to improve the compactness of the discovered regions. Capitalizing on an unprecedentedly large dataset with 1,560 longitudinal MRI scans from 887 infants, we delineate the first neurobiologically meaningful representation of early cortical regionalization, providing a valuable reference for brain development studies.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
EditorsDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
PublisherSpringer Science and Business Media Deutschland GmbH
Pages841-849
Number of pages9
ISBN (Print)9783030322441
DOIs
Publication statusPublished - 2019
Event22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: 2019 Oct 132019 Oct 17

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11765 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Country/TerritoryChina
CityShenzhen
Period19/10/1319/10/17

Bibliographical note

Publisher Copyright:
© 2019, Springer Nature Switzerland AG.

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Revealing Developmental Regionalization of Infant Cerebral Cortex Based on Multiple Cortical Properties'. Together they form a unique fingerprint.

Cite this