Robust spatial filtering with beta divergence

Wojciech Samek, Duncan Blythe, Klaus Robert Müller, Motoaki Kawanabe

Research output: Contribution to journalConference articlepeer-review

34 Citations (Scopus)

Abstract

The efficiency of Brain-Computer Interfaces (BCI) largely depends upon a reliable extraction of informative features from the high-dimensional EEG signal. A crucial step in this protocol is the computation of spatial filters. The Common Spatial Patterns (CSP) algorithm computes filters that maximize the difference in band power between two conditions, thus it is tailored to extract the relevant information in motor imagery experiments. However, CSP is highly sensitive to artifacts in the EEG data, i.e. few outliers may alter the estimate drastically and decrease classification performance. Inspired by concepts from the field of information geometry we propose a novel approach for robustifying CSP. More precisely, we formulate CSP as a divergence maximization problem and utilize the property of a particular type of divergence, namely beta divergence, for robustifying the estimation of spatial filters in the presence of artifacts in the data. We demonstrate the usefulness of our method on toy data and on EEG recordings from 80 subjects.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Publication statusPublished - 2013
Event27th Annual Conference on Neural Information Processing Systems, NIPS 2013 - Lake Tahoe, NV, United States
Duration: 2013 Dec 52013 Dec 10

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Robust spatial filtering with beta divergence'. Together they form a unique fingerprint.

Cite this