Abstract
The efficiency of Brain-Computer Interfaces (BCI) largely depends upon a reliable extraction of informative features from the high-dimensional EEG signal. A crucial step in this protocol is the computation of spatial filters. The Common Spatial Patterns (CSP) algorithm computes filters that maximize the difference in band power between two conditions, thus it is tailored to extract the relevant information in motor imagery experiments. However, CSP is highly sensitive to artifacts in the EEG data, i.e. few outliers may alter the estimate drastically and decrease classification performance. Inspired by concepts from the field of information geometry we propose a novel approach for robustifying CSP. More precisely, we formulate CSP as a divergence maximization problem and utilize the property of a particular type of divergence, namely beta divergence, for robustifying the estimation of spatial filters in the presence of artifacts in the data. We demonstrate the usefulness of our method on toy data and on EEG recordings from 80 subjects.
Original language | English |
---|---|
Journal | Advances in Neural Information Processing Systems |
Publication status | Published - 2013 |
Event | 27th Annual Conference on Neural Information Processing Systems, NIPS 2013 - Lake Tahoe, NV, United States Duration: 2013 Dec 5 → 2013 Dec 10 |
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing