Abstract
We investigate the enhancement mechanism of the electroluminescence (EL) of alkali metal based n-doped organic light-emitting diodes (OLEDs). The dual role of the n-dopant (carrier transport and lowering of the injection barrier) induces a trade-off. When the electron transport layer (ETL) is optimally doped by the n-dopant for the highest conductivity, the amount of n-dopant at the ETL/cathode interface is insufficient to form enough chemical bonds with the cathode for efficient carrier injection. This insufficient amount of n-dopant limits the carrier injection properties. To solve this problem, we demonstrated that the addition of an electron injection layer (EIL) comprised of the n-dopant could increase its presence at the interface and, thereby, improve the carrier injection properties and, consequently, the EL efficiency. Moreover, simply using an alkali-metal alloy (rather than co-deposition) on the n-doped ETL as a cathode, instead of using the additional EIL, greatly improves the EL efficiency of the OLEDs. The alkali-metal alloy cathode increased the interfaced states at the ETL/cathode. The proposed model was confirmed by x-ray photoemission spectroscopy experiments on the alkali-metal n-dopant/electrode interface.
Original language | English |
---|---|
Article number | 013312 |
Journal | Applied Physics Letters |
Volume | 100 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2012 Jan 2 |
Bibliographical note
Funding Information:This work was supported by a Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea Ministry of Education, Science and Technology (MEST) (CAFDC-20100009869) and by the World Class University (WCU, R32-2008-000-10082-0) Project of MEST, as well as by the Industrial Strategic Technology Development Program of MKE (KI002104, Development of Fundamental Technologies for Flexible Combined-Function Organic Electronic Device). We also wish to thank the Korea Basic Science Institute for the use of their XPS equipment.
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)