Abstract
Selenium is a vital trace element present as selenocysteine (Sec) in proteins that are, thus, known as selenoproteins. Humans have 25 selenoproteins, most of which are functionally characterized as oxidoreductases, where the Sec residue plays a catalytic role in redox regulation and antioxidant activity. Glutathione peroxidase plays a pivotal role in scavenging and inactivating hydrogen and lipid peroxides, whereas thioredoxin reductase reduces oxidized thioredoxins as well as non-disulfide substrates, such as lipid hydroperoxides and hydrogen peroxide. Selenoprotein R protects the cell against oxidative damage by reducing methionine-R-sulfoxide back to methionine. Selenoprotein O regulates redox homeostasis with catalytic activity of protein AMPylation. Moreover, endoplasmic reticulum (ER) membrane selenoproteins (SelI, K, N, S, and Sel15) are involved in ER membrane stress regulation. Selenoproteins containing the CXXU motif (SelH, M, T, V, and W) are putative oxidoreductases that participate in various cellular processes depending on redox regulation. Herein, we review the recent studies on the role of selenoproteins in redox regulation and their physiological functions in humans, as well as their role in various diseases.
Original language | English |
---|---|
Article number | 383 |
Journal | Antioxidants |
Volume | 9 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2020 May |
Bibliographical note
Publisher Copyright:© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Keywords
- Antioxidant
- Oxidative stress
- Redox homeostasis
- Redox signaling
- Selenoprotein
ASJC Scopus subject areas
- Biochemistry
- Physiology
- Molecular Biology
- Clinical Biochemistry
- Cell Biology