TY - JOUR
T1 - Roles of SnX2 (X = F, Cl, Br) Additives in Tin-Based Halide Perovskites toward Highly Efficient and Stable Lead-Free Perovskite Solar Cells
AU - Heo, Jin Hyuck
AU - Kim, Jongseob
AU - Kim, Hyungjun
AU - Moon, Sang Hwa
AU - Im, Sang Hyuk
AU - Hong, Ki Ha
N1 - Funding Information:
This research was supported by National R&D Program through the National Research Foundation of Korea (NRF) (NRF-2015M1A2A2055836, NRF-2018R1A2B6007888, NRF-2017M3A7B4041698) and New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) (No. 20183010013820). Supercomputing resources including technical support were supported by the Supercomputing Center/ Korea Institute of Science and Technology Information (KSC-2017-C2-0038).
Publisher Copyright:
© 2018 American Chemical Society.
PY - 2018/10/18
Y1 - 2018/10/18
N2 - Preserving the stability of Sn-based halide perovskites is a primary concern in developing photovoltaic light-absorbing materials for lead-free perovskite solar cells. Whereas the addition of SnX2 (X = F, Cl, Br) has been demonstrated to improve the photovoltaic performance of Sn halide perovskite solar cells, the mechanistic roles of SnX2 in the performance enhancement have not yet been studied appropriately. Here we perform a comparative study of CsSnI3 films and devices and examine how SnX2 additives affect their stability, and the results are corroborated by first-principles-based theoretical calculations. Unlike the conventional belief that the additives annihilate defects, we find that the additives effectively passivate the surface and stabilize the perovskite phase, promoting the stability of CsSnI3. Our mechanism suggests that SnBr2, which shows ca. 100 h of prolonged stability along with a high power conversion efficiency of 4.3%, is the best additive for enhancing the stability of CsSnI3.
AB - Preserving the stability of Sn-based halide perovskites is a primary concern in developing photovoltaic light-absorbing materials for lead-free perovskite solar cells. Whereas the addition of SnX2 (X = F, Cl, Br) has been demonstrated to improve the photovoltaic performance of Sn halide perovskite solar cells, the mechanistic roles of SnX2 in the performance enhancement have not yet been studied appropriately. Here we perform a comparative study of CsSnI3 films and devices and examine how SnX2 additives affect their stability, and the results are corroborated by first-principles-based theoretical calculations. Unlike the conventional belief that the additives annihilate defects, we find that the additives effectively passivate the surface and stabilize the perovskite phase, promoting the stability of CsSnI3. Our mechanism suggests that SnBr2, which shows ca. 100 h of prolonged stability along with a high power conversion efficiency of 4.3%, is the best additive for enhancing the stability of CsSnI3.
UR - http://www.scopus.com/inward/record.url?scp=85054696102&partnerID=8YFLogxK
U2 - 10.1021/acs.jpclett.8b02555
DO - 10.1021/acs.jpclett.8b02555
M3 - Article
C2 - 30259748
AN - SCOPUS:85054696102
SN - 1948-7185
VL - 9
SP - 6024
EP - 6031
JO - Journal of Physical Chemistry Letters
JF - Journal of Physical Chemistry Letters
IS - 20
ER -