Roles of SnX2 (X = F, Cl, Br) Additives in Tin-Based Halide Perovskites toward Highly Efficient and Stable Lead-Free Perovskite Solar Cells

Jin Hyuck Heo, Jongseob Kim, Hyungjun Kim, Sang Hwa Moon, Sang Hyuk Im, Ki Ha Hong

Research output: Contribution to journalArticlepeer-review

133 Citations (Scopus)

Abstract

Preserving the stability of Sn-based halide perovskites is a primary concern in developing photovoltaic light-absorbing materials for lead-free perovskite solar cells. Whereas the addition of SnX2 (X = F, Cl, Br) has been demonstrated to improve the photovoltaic performance of Sn halide perovskite solar cells, the mechanistic roles of SnX2 in the performance enhancement have not yet been studied appropriately. Here we perform a comparative study of CsSnI3 films and devices and examine how SnX2 additives affect their stability, and the results are corroborated by first-principles-based theoretical calculations. Unlike the conventional belief that the additives annihilate defects, we find that the additives effectively passivate the surface and stabilize the perovskite phase, promoting the stability of CsSnI3. Our mechanism suggests that SnBr2, which shows ca. 100 h of prolonged stability along with a high power conversion efficiency of 4.3%, is the best additive for enhancing the stability of CsSnI3.

Original languageEnglish
Pages (from-to)6024-6031
Number of pages8
JournalJournal of Physical Chemistry Letters
Volume9
Issue number20
DOIs
Publication statusPublished - 2018 Oct 18

Bibliographical note

Funding Information:
This research was supported by National R&D Program through the National Research Foundation of Korea (NRF) (NRF-2015M1A2A2055836, NRF-2018R1A2B6007888, NRF-2017M3A7B4041698) and New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) (No. 20183010013820). Supercomputing resources including technical support were supported by the Supercomputing Center/ Korea Institute of Science and Technology Information (KSC-2017-C2-0038).

Publisher Copyright:
© 2018 American Chemical Society.

ASJC Scopus subject areas

  • General Materials Science
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Roles of SnX2 (X = F, Cl, Br) Additives in Tin-Based Halide Perovskites toward Highly Efficient and Stable Lead-Free Perovskite Solar Cells'. Together they form a unique fingerprint.

Cite this