Abstract
Since many lateral flow assays (LFA) are tested daily, the improvement in accuracy can greatly impact individual patient care and public health. However, current self-testing for COVID-19 detection suffers from low accuracy, mainly due to the LFA sensitivity and reading ambiguities. Here, we present deep learning-assisted smartphone-based LFA (SMARTAI-LFA) diagnostics to provide accurate decisions with higher sensitivity. Combining clinical data learning and two-step algorithms enables a cradle-free on-site assay with higher accuracy than the untrained individuals and human experts via blind tests of clinical data (n = 1500). We acquired 98% accuracy across 135 smartphone application-based clinical tests with different users/smartphones. Furthermore, with more low-titer tests, we observed that the accuracy of SMARTAI-LFA was maintained at over 99% while there was a significant decrease in human accuracy, indicating the reliable performance of SMARTAI-LFA. We envision a smartphone-based SMARTAI-LFA that allows continuously enhanced performance by adding clinical tests and satisfies the new criterion for digitalized real-time diagnostics.
Original language | English |
---|---|
Article number | 2361 |
Journal | Nature communications |
Volume | 14 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2023 Dec |
Bibliographical note
Publisher Copyright:© 2023, The Author(s).
ASJC Scopus subject areas
- General Chemistry
- General Biochemistry,Genetics and Molecular Biology
- General Physics and Astronomy