TY - GEN
T1 - Scheduling methods with MIMO interference alignment for mutually interfering broadcast channels
AU - Park, Haewook
AU - Park, Seok Hwan
AU - Sung, Hakjea
AU - Lee, Inkyu
PY - 2010
Y1 - 2010
N2 - In this paper, we investigate an interference alignment (IA) technique introduced by Cadambe and Jafar in mutually interfering broadcast channels (IFBCs). First, we study the spatial multiplexing gain (SMG) for the 3-cell IFBC where all base stations and mobile users are equipped with multiple antennas. To achieve the derived optimal SMG, we extend the IA algorithm designed for K-user multi-input multi-output (MIMO) interference channels (IFCs) to the IFBC. In this paper, we present the IA scheme in conjunction with user selection which outperforms the time division multiple access (TDMA) technique in the IFBC environment. The optimal scheduling method capitalizes on multiuser diversity to achieve a significant fraction of sum capacity by using an exhaustive search algorithm. Since the computational complexity of the optimal scheduling method is prohibitive, a reduced complexity suboptimal scheduling method is proposed based on a coordinate ascent approach. Simulation results confirm that the reduced complexity scheduling algorithm achieves the sum rate close to the optimal algorithm with much reduced complexity.
AB - In this paper, we investigate an interference alignment (IA) technique introduced by Cadambe and Jafar in mutually interfering broadcast channels (IFBCs). First, we study the spatial multiplexing gain (SMG) for the 3-cell IFBC where all base stations and mobile users are equipped with multiple antennas. To achieve the derived optimal SMG, we extend the IA algorithm designed for K-user multi-input multi-output (MIMO) interference channels (IFCs) to the IFBC. In this paper, we present the IA scheme in conjunction with user selection which outperforms the time division multiple access (TDMA) technique in the IFBC environment. The optimal scheduling method capitalizes on multiuser diversity to achieve a significant fraction of sum capacity by using an exhaustive search algorithm. Since the computational complexity of the optimal scheduling method is prohibitive, a reduced complexity suboptimal scheduling method is proposed based on a coordinate ascent approach. Simulation results confirm that the reduced complexity scheduling algorithm achieves the sum rate close to the optimal algorithm with much reduced complexity.
UR - http://www.scopus.com/inward/record.url?scp=79551641425&partnerID=8YFLogxK
U2 - 10.1109/GLOCOM.2010.5683466
DO - 10.1109/GLOCOM.2010.5683466
M3 - Conference contribution
AN - SCOPUS:79551641425
SN - 9781424456383
T3 - GLOBECOM - IEEE Global Telecommunications Conference
BT - 2010 IEEE Global Telecommunications Conference, GLOBECOM 2010
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 53rd IEEE Global Communications Conference, GLOBECOM 2010
Y2 - 6 December 2010 through 10 December 2010
ER -