SchNetPack: A Deep Learning Toolbox for Atomistic Systems

K. T. Schütt, P. Kessel, M. Gastegger, K. A. Nicoli, A. Tkatchenko, K. R. Müller

Research output: Contribution to journalArticlepeer-review

240 Citations (Scopus)


SchNetPack is a toolbox for the development and application of deep neural networks that predict potential energy surfaces and other quantum-chemical properties of molecules and materials. It contains basic building blocks of atomistic neural networks, manages their training, and provides simple access to common benchmark datasets. This allows for an easy implementation and evaluation of new models. For now, SchNetPack includes implementations of (weighted) atom-centered symmetry functions and the deep tensor neural network SchNet, as well as ready-to-use scripts that allow one to train these models on molecule and material datasets. Based on the PyTorch deep learning framework, SchNetPack allows one to efficiently apply the neural networks to large datasets with millions of reference calculations, as well as parallelize the model across multiple GPUs. Finally, SchNetPack provides an interface to the Atomic Simulation Environment in order to make trained models easily accessible to researchers that are not yet familiar with neural networks.

Original languageEnglish
Pages (from-to)448-455
Number of pages8
JournalJournal of Chemical Theory and Computation
Issue number1
Publication statusPublished - 2019 Jan 8

Bibliographical note

Publisher Copyright:
© 2018 American Chemical Society.

ASJC Scopus subject areas

  • Computer Science Applications
  • Physical and Theoretical Chemistry


Dive into the research topics of 'SchNetPack: A Deep Learning Toolbox for Atomistic Systems'. Together they form a unique fingerprint.

Cite this