Abstract
To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.
Original language | English |
---|---|
Article number | 425711 |
Journal | Nanotechnology |
Volume | 27 |
Issue number | 42 |
DOIs | |
Publication status | Published - 2016 Sept 19 |
Bibliographical note
Funding Information:This study was supported by NRF (2014R1A1A3051259). The HVEM (Daejeon) measurements were performed at the KBSI. The experiments at the PLS were partially supported by MOST and POSTECH.
Keywords
- Schottky barrier height
- Schottky nanocontact
- conductive AFM
- ideality factor
- nanostructures
ASJC Scopus subject areas
- Bioengineering
- General Chemistry
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering