Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at s =8 TeV

(CMS Collaboration)

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)

Abstract

A first search for pair production of dark matter candidates through vector boson fusion in proton-proton collisions at s=8 TeV is performed with the CMS detector. The vector boson fusion topology enhances missing transverse momentum, providing a way to probe supersymmetry, even in the case of a compressed mass spectrum. The data sample corresponds to an integrated luminosity of 18.5 fb-1, recorded by the CMS experiment. The observed dijet mass spectrum is consistent with the standard model expectation. In an effective field theory, dark matter masses are explored as a function of contact interaction strength. The most stringent limit on bottom squark production with mass below 315 GeV is also reported, assuming a 5 GeV mass difference with respect to the lightest neutralino.

Original languageEnglish
Article number021802
JournalPhysical review letters
Volume118
Issue number2
DOIs
Publication statusPublished - 2017 Jan 12

Bibliographical note

Publisher Copyright:
© 2017 CERN, for the CMS Collaboration. Published by the American Physical Society under the terms of the «https://creativecommons.org/licenses/by/4.0/» Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at s =8 TeV'. Together they form a unique fingerprint.

Cite this