Abstract
A search for heavy resonances with masses above 1TeV, decaying to final states containing a vector boson and a Higgs boson, is presented. The search considers hadronic decays of the vector boson, and Higgs boson decays to b quarks. The decay products are highly boosted, and each collimated pair of quarks is reconstructed as a single, massive jet. The analysis is performed using a data sample collected in 2016 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13TeV, corresponding to an integrated luminosity of 35.9fb-1. The data are consistent with the background expectation and are used to place limits on the parameters of a theoretical model with a heavy vector triplet. In the benchmark scenario with mass-degenerate W′ and Z ′ bosons decaying predominantly to pairs of standard model bosons, for the first time heavy resonances for masses as high as 3.3TeV are excluded at 95% confidence level, setting the most stringent constraints to date on such states decaying into a vector boson and a Higgs boson.
Original language | English |
---|---|
Article number | 636 |
Journal | European Physical Journal C |
Volume | 77 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2017 Sept 1 |
Bibliographical note
Publisher Copyright:© 2017, CERN for the benefit of the CMS collaboration.
Keywords
- B2G
- CMS
- Diboson
- Hadronic
- Higgs
- Physics
- VH
ASJC Scopus subject areas
- Engineering (miscellaneous)
- Physics and Astronomy (miscellaneous)