Segmentation of craniomaxillofacial bony structures from MRI with a 3D deep-learning based cascade framework

Dong Nie, Li Wang, Roger Trullo, Jianfu Li, Peng Yuan, James Xia, Dinggang Shen

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    21 Citations (Scopus)

    Abstract

    Computed tomography (CT) is commonly used as a diagnostic and treatment planning imaging modality in craniomaxillofacial (CMF) surgery to correct patient’s bony defects. A major disadvantage of CT is that it emits harmful ionizing radiation to patients during the exam. Magnetic resonance imaging (MRI) is considered to be much safer and noninvasive, and often used to study CMF soft tissues (e.g., temporomandibular joint and brain). However, it is extremely difficult to accurately segment CMF bony structures from MRI since both bone and air appear to be black in MRI, along with low signal-to-noise ratio and partial volume effect. To this end, we proposed a 3D deep-learning based cascade framework to solve these issues. Specifically, a 3D fully convolutional network (FCN) architecture is first adopted to coarsely segment the bony structures. As the coarsely segmented bony structures by FCN tend to be thicker, convolutional neural network (CNN) is further utilized for fine-grained segmentation. To enhance the discriminative ability of the CNN, we particularly concatenate the predicted probability maps from FCN and the original MRI, and feed them together into the CNN to provide more context information for segmentation. Experimental results demonstrate a good performance and also the clinical feasibility of our proposed 3D deep-learning based cascade framework.

    Original languageEnglish
    Title of host publicationMachine Learning in Medical Imaging - 8th International Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Proceedings
    EditorsYinghuan Shi, Heung-Il Suk, Kenji Suzuki, Qian Wang
    PublisherSpringer Verlag
    Pages266-273
    Number of pages8
    ISBN (Print)9783319673882
    DOIs
    Publication statusPublished - 2017
    Event8th International Workshop on Machine Learning in Medical Imaging, MLMI 2017 held in conjunction with the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2017 - Quebec City, Canada
    Duration: 2017 Sept 102017 Sept 10

    Publication series

    NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Volume10541 LNCS
    ISSN (Print)0302-9743
    ISSN (Electronic)1611-3349

    Other

    Other8th International Workshop on Machine Learning in Medical Imaging, MLMI 2017 held in conjunction with the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2017
    Country/TerritoryCanada
    CityQuebec City
    Period17/9/1017/9/10

    Bibliographical note

    Publisher Copyright:
    © 2017, Springer International Publishing AG.

    ASJC Scopus subject areas

    • Theoretical Computer Science
    • General Computer Science

    Fingerprint

    Dive into the research topics of 'Segmentation of craniomaxillofacial bony structures from MRI with a 3D deep-learning based cascade framework'. Together they form a unique fingerprint.

    Cite this