Seismic reliability-based multiobjective design of water distribution system: Sensitivity analysis

Do Guen Yoo, Donghwi Jung, Doosun Kang, Joong Hoon Kim

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


This study proposes a seismic reliability-based water distribution system (WDS) optimal design model that minimizes total cost and maximizes seismic reliability. Here, seismic reliability is defined as the ratio of the available quantity of water to the required demand under stochastic earthquake events. A new evaluation model is used to assess seismic reliability, while a multiobjective harmony search (MOHS) based on a ranking approach is used for optimization. The Anytown network was modified for the demonstration of the proposed method. First, this study performs the sensitivity analysis of MOHS parameter values [i.e., harmony search consideration rate (HMCR) and pitch adjustment rate (PAR)] to identify the best parameter set in a pipe-sizing problem of an Anytown network. Then, Pareto optimal solutions with three different tank configurations are obtained and compared with respect to the final Pareto fronts and the system designs. For the sensitivity analysis, it reveals that higher PAR and lower HMCR values are also required to maintain high searchability in a multiobjective (MO) framework. In addition, Pareto-optimal solutions found for networks with tanks dominated those found for those without tanks.

Original languageEnglish
Article number06016005
JournalJournal of Water Resources Planning and Management
Issue number2
Publication statusPublished - 2017 Feb 1

Bibliographical note

Funding Information:
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP) (No. 2016R1A2A1A05005306).

Publisher Copyright:
© 2016 American Society of Civil Engineers.


  • Multiobjective harmony search (MOHS)
  • Reliability EVAluation model for Seismic hazard for water supply NETwork (REVAS.NET)
  • Seismic reliability
  • Sensitivity analysis
  • Water distribution systems (WDSs)

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Geography, Planning and Development
  • Water Science and Technology
  • Management, Monitoring, Policy and Law


Dive into the research topics of 'Seismic reliability-based multiobjective design of water distribution system: Sensitivity analysis'. Together they form a unique fingerprint.

Cite this