Selenoprotein MsrB1 promotes anti-inflammatory cytokine gene expression in macrophages and controls immune response in vivo /631/45/612 /631/250 /38 /82 /82/80 article

Byung Cheon Lee, Sang Goo Lee, Min Kyung Choo, Ji Hyung Kim, Hae Min Lee, Sorah Kim, Dmitri E. Fomenko, Hwa Young Kim, Jin Mo Park, Vadim N. Gladyshev

Research output: Contribution to journalArticlepeer-review

50 Citations (Scopus)

Abstract

Post-translational redox modification of methionine residues often triggers a change in protein function. Emerging evidence points to this reversible protein modification being an important regulatory mechanism under various physiological conditions. Reduction of oxidized methionine residues is catalyzed by methionine sulfoxide reductases (Msrs). Here, we show that one of these enzymes, a selenium-containing MsrB1, is highly expressed in immune-activated macrophages and contributes to shaping cellular and organismal immune responses. In particular, lipopolysaccharide (LPS) induces expression of MsrB1, but not other Msrs. Genetic ablation of MsrB1 did not preclude LPS-induced intracellular signaling in macrophages, but resulted in attenuated induction of anti-inflammatory cytokines, such as interleukin (IL)-10 and the IL-1 receptor antagonist. This anomaly was associated with excessive pro-inflammatory cytokine production as well as an increase in acute tissue inflammation in mice. Together, our findings suggest that MsrB1 controls immune responses by promoting anti-inflammatory cytokine expression in macrophages. MsrB1-dependent reduction of oxidized methionine in proteins may be a heretofore unrecognized regulatory event underlying immunity and inflammatory disease, and a novel target for clinical applications.

Original languageEnglish
Article number5119
JournalScientific reports
Volume7
Issue number1
DOIs
Publication statusPublished - 2017 Dec 1

Bibliographical note

Publisher Copyright:
© 2017 The Author(s).

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Selenoprotein MsrB1 promotes anti-inflammatory cytokine gene expression in macrophages and controls immune response in vivo /631/45/612 /631/250 /38 /82 /82/80 article'. Together they form a unique fingerprint.

Cite this