Abstract
Though need for precise alignment of interlayer patterning in LTCC application, there have been few reports about zero-shrinkage sintering techniques. In this study, ceramic substrate with minimal x-y shrinkage was prepared by glass infiltration method with 'Al2O3/glass/ Al2O3' structure. Glass infiltration into alumina particle layer was observed with variation of both sintering temperature (700≤T sint.≤900 °C) and alumina particle size distribution (0.5≤D50≤1.8 μm). Since glass had low viscosity enough to infiltrate at 700 °C, infiltration started at that temperature and infiltrated up to 20 μm or so with temperature increase, but infiltration depth did not increase noticeably above 750 °C. Based on these results, when sintered at 900 °C with controlled sheet thickness of both glass and alumina, the shrinkage in x-y direction was calculated as less than 0.2%, with 40% in z direction. Dielectric constant (εr) measured 6.19 with quality factor (Q) of 552 at 1 GHz of frequency. From these results, it is thought that zero-shrinkage ceramic substrates would be obtained without de-lamination.
Original language | English |
---|---|
Pages (from-to) | 367-371 |
Number of pages | 5 |
Journal | Journal of Electroceramics |
Volume | 23 |
Issue number | 2-4 |
DOIs | |
Publication status | Published - 2009 Oct |
Keywords
- AlO/glass/Al O structure
- Infiltration
- LTCC
- Zero shrinkage
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Condensed Matter Physics
- Mechanics of Materials
- Electrical and Electronic Engineering
- Materials Chemistry