Self-recovering passive cooling utilizing endothermic reaction of NH4NO3/H2O driven by water sorption for photovoltaic cell

Seonggon Kim, Jong Ha Park, Jae Won Lee, Yongchan Kim, Yong Tae Kang

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Power efficiency of photovoltaic cell is significantly affected by the cell temperature. Here, a self-recovering passive cooling unit is developed. The water-saturated zeolite 13X is coated on the back side of photovoltaic cell, and ammonium nitrate is dispersed as a layer to form a thin film. When heat is supplied, water is desorbed from zeolite 13X (latent cooling), and dissolves ammonium nitrate to induce endothermic reaction cooling. It is a reversible process that recovers itself at night. The unit works on the basis that the water sorption performance of porous materials is inversely proportional to temperature, and the solubility of endothermic reaction pairs increases proportionally with temperature. The average temperature of photovoltaic cell can be reduced by 15.1 °C, and the cooling energy density reaches 2,876 kJ/kg with average cooling power of 403 W/m2. We show that highly efficient passive cooling comprising inexpensive materials for photovoltaic cell could be achieved.

Original languageEnglish
Article number2374
JournalNature communications
Volume14
Issue number1
DOIs
Publication statusPublished - 2023 Dec

Bibliographical note

Publisher Copyright:
© 2023, The Author(s).

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Self-recovering passive cooling utilizing endothermic reaction of NH4NO3/H2O driven by water sorption for photovoltaic cell'. Together they form a unique fingerprint.

Cite this