Semantic Line Detection and Its Applications

Jun Tae Lee, Han Ul Kim, Chul Lee, Chang-Su Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

31 Citations (Scopus)


Semantic lines characterize the layout of an image. Despite their importance in image analysis and scene understanding, there is no reliable research for semantic line detection. In this paper, we propose a semantic line detector using a convolutional neural network with multi-task learning, by regarding the line detection as a combination of classification and regression tasks. We use convolution and max-pooling layers to obtain multi-scale feature maps for an input image. Then, we develop the line pooling layer to extract a feature vector for each candidate line from the feature maps. Next, we feed the feature vector into the parallel classification and regression layers. The classification layer decides whether the line candidate is semant ic or not. In case of a semantic line, the regression layer determines the offset for refining the line location. Experimental results show that the proposed detector extracts semantic lines accurately and reliably. Moreover, we demonstrate that the proposed detector can be used successfully in three applications: horizon estimation, composition enhancement, and image simplification.

Original languageEnglish
Title of host publicationProceedings - 2017 IEEE International Conference on Computer Vision, ICCV 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages9
ISBN (Electronic)9781538610329
Publication statusPublished - 2017 Dec 22
Event16th IEEE International Conference on Computer Vision, ICCV 2017 - Venice, Italy
Duration: 2017 Oct 222017 Oct 29

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499


Other16th IEEE International Conference on Computer Vision, ICCV 2017

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition


Dive into the research topics of 'Semantic Line Detection and Its Applications'. Together they form a unique fingerprint.

Cite this