Semisupervised Tripled Dictionary Learning for Standard-Dose PET Image Prediction Using Low-Dose PET and Multimodal MRI

Yan Wang, Guangkai Ma, Le An, Feng Shi, Pei Zhang, David S. Lalush, Xi Wu, Yifei Pu, Jiliu Zhou, Dinggang Shen

Research output: Contribution to journalArticlepeer-review

67 Citations (Scopus)


Objective: To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI). Methods: It was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semisupervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance. Results: Validation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods. Conclusion: This paper proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection. Significance: The proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients.

Original languageEnglish
Article number7469380
Pages (from-to)569-579
Number of pages11
JournalIEEE Transactions on Biomedical Engineering
Issue number3
Publication statusPublished - 2017 Mar

Bibliographical note

Publisher Copyright:
© 1964-2012 IEEE.


  • Local coordinate coding (LCC)
  • positron emission tomography (PET)
  • semisupervised tripled dictionary learning (SSTDL)
  • sparse representation (SR)

ASJC Scopus subject areas

  • Biomedical Engineering


Dive into the research topics of 'Semisupervised Tripled Dictionary Learning for Standard-Dose PET Image Prediction Using Low-Dose PET and Multimodal MRI'. Together they form a unique fingerprint.

Cite this