Sensorless PV power forecasting in grid-connected buildings through deep learning

Junseo Son, Yongtae Park, Junu Lee, Hyogon Kim

Research output: Contribution to journalArticlepeer-review

39 Citations (Scopus)


Existing works in photovoltaic (PV) power generation focus on accurately predicting the PV power output on a forecast horizon. As the solar power generation is heavily influenced by meteorological conditions such as solar radiation, the weather forecast is a critical input in the prediction performance. However, the weather forecast is traditionally considered to have coarse granularity, so many are compelled to use on-site meteorological sensors to complement it. However, the approach involving on-site sensors has several issues. First, it incurs the cost in the installation, operation, and management of the sensors. Second, the physical model of the sensor dynamics itself can be a source of forecast errors. Third, it requires an accumulation of sensory data that represent all seasonal variations, which takes time to collect. In this paper, we take an alternative approach to use a relatively large deep neural network (DNN) instead of the on-site sensors to cope with the coarse-grained weather forecast. With historical PV output power data from our grid-connected building with a rooftop PV power generation facility and the publicly available weather forecast history data, we demonstrate that we can train a six-layer feedforward DNN for the day-ahead forecast. It achieves the average mean absolute error (MAE) of 2.9%, comparable to that of the conventional model, but without involing the on-site sensors.

Original languageEnglish
Article number2529
JournalSensors (Switzerland)
Issue number8
Publication statusPublished - 2018 Aug 2

Bibliographical note

Funding Information:
This work was supported by Mid-Career Researcher Program through an NRF grant funded by the MSIP (NRF-2015R1A2A1A10052590).

Publisher Copyright:
© 2018 by the authors. Licensee MDPI, Basel, Switzerland.


  • Accuracy
  • Cost reduction
  • Deep learning
  • On-site meteorological sensors
  • PV power output forecast
  • Solar power

ASJC Scopus subject areas

  • Analytical Chemistry
  • Information Systems
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering


Dive into the research topics of 'Sensorless PV power forecasting in grid-connected buildings through deep learning'. Together they form a unique fingerprint.

Cite this