SmartFork: Partitioned multicast allocation and switching in network-on-chip routers

Dimitrios Konstantinou, Chrysostomos Nicopoulos, Junghee Lee, Georgios Ch Sirakoulis, Giorgos Dimitrakopoulos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

Multicast on-chip communication is encountered in various cache-coherence protocols targeting multi-core processors, and its pervasiveness is increasing due to the proliferation of machine learning accelerators. In-network handling of multicast traffic imposes additional switching-level restrictions to guarantee deadlock freedom, while it stresses the allocation efficiency of Network-on-Chip (NoC) routers. In this work, we propose a novel NoC router microarchitecture, called SmartFork, which employs a versatile and cost-efficient multicast packet replication scheme that allows the design of high-throughput and low-cost NoCs. The design is adapted to the average branch splitting observed in real-world multicast routing algorithms. Compared to state-of-the-art NoC multicast approaches, SmartFork is demonstrated to yield higher performance in terms of latency and throughput, while still offering a cost-effective implementation.

Original languageEnglish
Title of host publication2020 IEEE International Symposium on Circuits and Systems, ISCAS 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728133201
Publication statusPublished - 2020
Event52nd IEEE International Symposium on Circuits and Systems, ISCAS 2020 - Virtual, Online
Duration: 2020 Oct 102020 Oct 21

Publication series

NameProceedings - IEEE International Symposium on Circuits and Systems
Volume2020-October
ISSN (Print)0271-4310

Conference

Conference52nd IEEE International Symposium on Circuits and Systems, ISCAS 2020
CityVirtual, Online
Period20/10/1020/10/21

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'SmartFork: Partitioned multicast allocation and switching in network-on-chip routers'. Together they form a unique fingerprint.

Cite this